Vincze / Patten / Liu | Computer Vision Systems | Buch | 978-3-030-87155-0 | sack.de

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

Reihe: Theoretical Computer Science and General Issues

Vincze / Patten / Liu

Computer Vision Systems

13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-87155-0
Verlag: Springer International Publishing

13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

Reihe: Theoretical Computer Science and General Issues

ISBN: 978-3-030-87155-0
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 13th International Conference on Computer Vision Systems, ICVS 2021, held in September 2021. Due to COVID-19 pandemic the conference was held virtually.
The 20 papers presented were carefully reviewed and selected from 29 submissions. cover a broad spectrum of issues falling under the wider scope of computer vision in real-world applications, including among others, vision systems for robotics, autonomous vehicles, agriculture and medicine. In this volume, the papers are organized into the sections: attention systems; classification and detection; semantic interpretation; video and motion analysis; computer vision systems in agriculture.
Vincze / Patten / Liu Computer Vision Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Attention Systems.- Thermal Image Super-Resolution Using Second-Order Channel Attention with Varying Receptive Fields.- MARL: Multimodal Attentional Representation Learning for Disease Prediction.- Object Localization with Attribute Preference based on Top-Down Attention.- See the silence: improving visual-only voice activity detection by optical flow and RGB fusion.- Classification and Detection.- Score to Learn: a Comparative Analysis of Scoring Functions for Active Learning in Robotics.- Enhancing the performance of image classification through features automatically learned from depth-maps.- Object Detection on TPU Accelerated Embedded Devices.- Tackling Inter-Class Similarity and Intra-Class Variance for Microscopic Image-based Classification.- Semantic Interpretation.-  Measuring the Sim2Real gap in 3D Object classification for different 3D data representation.- Spatially-Constrained Semantic Segmentation with Topological ?aps and Visual ?mbeddings.- Knowledge-enabled generation of semantically annotated image sequences of manipulation activities from VR demonstrations.- Make It Easier: An Empirical Simplification of a Deep 3D Segmentation Network for Human Body Parts.- Video and Motion Analysis.- Video Popularity Prediction through Fusing Early Viewership with Video Content.- Action Prediction during Human-Object Interaction based on DTW and Early Fusion of Human and Object Representations.- GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids.- An Efficient Video Desnowing and Deraining Method with a Novel Variant Dataset.- Computer Vision Systems in Agriculture.- Robust Counting of Soft Fruit through Occlusions with Re-identification.- Non-destructive Soft Fruit Mass and Volume Estimation for Phenotyping in Horticulture.- Learning Image-based Contaminant Detection in Wool Fleece from Noisy Annotations.- Active Learning for Crop-Weed Discrimination by Image Classification from Convolutional Neural Network’s Feature Pyramid Levels.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.