Visser / Speekenbrink | Mixture and Hidden Markov Models with R | E-Book | sack.de
E-Book

E-Book, Englisch, 267 Seiten, eBook

Reihe: Use R!

Visser / Speekenbrink Mixture and Hidden Markov Models with R


1. Auflage 2022
ISBN: 978-3-031-01440-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 267 Seiten, eBook

Reihe: Use R!

ISBN: 978-3-031-01440-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book discusses mixture and hidden Markov models for modeling behavioral data. Mixture and hidden Markov models are statistical models which are useful when an observed system occupies a number of distinct “regimes” or unobserved (hidden) states. These models are widely used in a variety of fields, including artificial intelligence, biology, finance, and psychology. Hidden Markov models can be viewed as an extension of mixture models, to model transitions between states over time. Covering both mixture and hidden Markov models in a single book allows main concepts and issues to be introduced in the relatively simpler context of mixture models. After a thorough treatment of the theory and practice of mixture modeling, the conceptual leap towards hidden Markov models is relatively straightforward. This book provides many practical examples illustrating the wide variety of uses of the models. These examples are drawn from our own work in psychology, as well as other areas such as financial time series and climate data. Most examples illustrate the use of the authors’ depmixS4 package, which provides a flexible framework to construct and estimate mixture and hidden Markov models. All examples are fully reproducible and the accompanying hmmR package provides all the datasets used, as well as additional functionality. This book is suitable for advanced students and researchers with an applied background.
Visser / Speekenbrink Mixture and Hidden Markov Models with R jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Preface.- Introduction & preliminaries.- 2 Mixture and latent class models.- 3 Mixture and latent class models: Applications.- 4 Hidden Markov model.- 5 Univariate hidden Markov models.- 6 Multivariate hidden Markov models.- 7 Extensions.- References.- Index.- Epilogue.


Ingmar Visser is Associate Professor of Developmental Psychology at the Department of Psychology, University of Amsterdam, where he also obtained his PhD after studying philosophy of language, mathematics and psychology. His research revolves around studying the dynamics of learning and development in all stages of development and in developing statistical methods for optimally mapping such development.Maarten Speekenbrink is Associate Professor of Mathematical Psychology at the Department of Experimental Psychology, University College London, and Fellow of the Alan Turing Institute, the UK national institute for data science and artificial intelligence. He obtained his PhD in Psychological Methods at the University of Amsterdam.Together, the authors developed the depmixS4 package, which already has a large user base in different areas of science. They have authored articles on the theory and use of hidden Markov models, and have given numerous talks and workshops on mixture and hidden Markov modelling.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.