Vojta | Teubner-Taschenbuch der statistischen Physik | Buch | 978-3-519-00227-7 | sack.de

Buch, Deutsch, 510 Seiten, Format (B × H): 145 mm x 222 mm, Gewicht: 791 g

Vojta

Teubner-Taschenbuch der statistischen Physik


2000
ISBN: 978-3-519-00227-7
Verlag: Vieweg+Teubner Verlag

Buch, Deutsch, 510 Seiten, Format (B × H): 145 mm x 222 mm, Gewicht: 791 g

ISBN: 978-3-519-00227-7
Verlag: Vieweg+Teubner Verlag


Aus moderner Sicht werden in diesem Teubner-Taschenbuch die Grundlagen und wichtige Anwendungen der statistischen Physik dargestellt. Auf eine gründliche Darstellung der Begriffsbildungen der statistischen Physik, auf die korrekte Herleitung grundlegender Gleichungen und auf die Durchführung wichtiger Beweise wird besonderer Wert gelegt. Das Buch eignet sich als Begleittext für Kurs- und Spezialvorlesungen, als Repetitorium zur Prüfungsvorbereitung und als Nachschlagewerk zur raschen Information für breite Leserkreise aus Mathematik, Naturwissenschaften und technischen Disziplinen, insbesondere für Studenten dieser Fachrichtungen.

Vojta Teubner-Taschenbuch der statistischen Physik jetzt bestellen!

Zielgruppe


Physiker, Mathematiker, Chemiker, Ingenieure und Studenten

Weitere Infos & Material


1 Kombinatorik.- 1.0 Einleitung.- 1.1 Kombinatorische Zahlen.- 1.2 Kombinatorische Funktionen.- 1.3 Kombinatorische Operationen.- 2 Wahrscheinlichkeitstheorie.- 2.0 Einleitung.- 2.1 Der Wahrscheinlichkeitsbegriff.- 2.2 Zufällige Größen.- 2.3 Bedingte Wahrscheinlichkeiten, Korrelation.- 2.4 Erzeugende Funktionen, Kumulanten.- 2.5 Stochastische Prozesse.- 3 Quantenmechanik und Wahrscheinlichkeit.- 3.0 Einleitung.- 3.1 Grundlegung der Quantenmechanik.- 3.2 Statistische Operatoren.- 3.3 Quantenmechanik der Vielteilchensysteme.- 4 Thermodynamik.- 4.0 Einleitung.- 4.1 Gleichgewichtsthermodynamik.- 4.2 Thermodynamik irreversibler Prozesse.- 5 Statistische Physik der Gleichgewichtssysteme.- 5.0 Einleitung.- 5.1 Grundlagen.- 5.2 Statistische Gesamtheiten.- 5.3 Boltzmann-Statistik.- 5.4 Quantenstatistiken idealer Gase.- 5.5 Quasiteilchenstatistik.- 5.6 Statistik von Spinsystemen und kooperativen Modellsystemen.- 5.7 Statistik der Phasenumwandlungen.- 6 Statistische Physik der Systeme im Nichtgleichgewicht.- 6.0 Einleitung.- 6.1 Irreversibilitätsproblem und Entropiebegriff.- 6.2 Langevin-Theorie und Fokker-Planck-Theorie.- 6.3 Master-Gleichungen und Schrittprozesse.- 6.4 Zufallswanderung und Diffusion.- 6.5 Rauschen.- 6.6 Kinetische Gastheorie und kinetische Plasmatheorie.- 6.7 Response-Theorie, Fluktuations-Dissipations-Theoreme.- 6.8 Thermodynamische Green-Funktionen.- 6.9 Projektionsoperatormethoden.- 6.10 Weitere wichtige Methoden.- 7 Statistische Physik und Informationstheorie.- 7.0 Einleitung.- 7.1 Shannonsche Informationstheorie und statistische Physik.- 7.2 Informationstheoretische Methoden der Statistik irreversibler Prozesse.- 8 Phasenraummethoden der Quantenstatistik.- 8.0 Einleitung.- 8.1 Grundlagen des Wigner-Formalismus.- 8.2 Kohärente Zustände.- 9Fraktaltheorie und Perkolationstheorie.- 9.0 Einleitung.- 9.1 Die Fraktalkonzeption.- 9.2 Dynamik und Transportstatistik fraktaler Systeme.- 9.3 Perkolation.- 10 Theorie dynamischer Systeme, Chaostheorie, Ergodentheorie.- 10.0 Einleitung.- 10.1 Dynamische Systeme.- 10.2 Deterministisches Chaos.- 10.3 Ergodentheorie.- 11 Statistische Thermodynamik chemischer Systeme.- 11.0 Einleitung.- 11.1 Chemische Thermodynamik.- 11.2 Statistische Thermodynamik chemischer Gleichgewichtssysteme.- 11.3 Statistische Thermodynamik chemischer Reaktionen.- 12 Statistische Theorie biologischer Systeme.- 12.0 Einleitung.- 12.1 Biopolymere.- 12.2 Neuronennetzwerke.- 13 Synergetik, weitere Anwendungen der statistischen Physik.- 13.0 Einleitung.- 13.1 Synergetik.- 13.2 Weitere Anwendungen.- Literatur.- Verzeichnis wichtiger Symbole.- Register.


Prof.Dr. Günter Vojta, Universität Leipzig
Dr. Matthias Vojta, Technische Universität Dresden



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.