Walter Gewöhnliche Differentialgleichungen
7. Auflage 2000
ISBN: 978-3-642-57240-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine Einführung
E-Book, Deutsch, 402 Seiten, Web PDF
Reihe: Springer-Lehrbuch
ISBN: 978-3-642-57240-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
I. Differentialgleichungen erster Ordnung: Elementare Methoden.- § 1 Explizite Differentialgleichungen erster Ordnung. Elementar integrierbare Fälle.- § 2 Die lineare Differentialgleichung. Verwandte Differentialgleichungen.- § 3 Differentialgleichungen für Kurvenscharen. Exakte Differentialgleichungen.- § 4 Implizite Differentialgleichungen erster Ordnung.- II. Differentialgleichungen erster Ordnung: Theorie.- § 5 Hilfsmittel aus der Funktionalanalysis.- § 6 Ein Existenz- und Eindeutigkeitssatz.- Ergänzung: Singuläre Anfangswertprobleme.- § 7 Der Existenzsatz von Peano.- § 8 Differentialgleichungen im Komplexen. Potenzreihenentwicklung.- § 9 Ober- und Unterfunktionen. Maximal- und Minimalintegrale.- III. Systeme von Differentialgleichungen erster Ordnung und Differentialgleichungen höherer Ordnung.- § 10 Das Anfangswertproblem für ein System erster Ordnung.- § 11 Das Anfangswertproblem für Differentialgleichungen n-ter Ordnung. Elementar-integrierbare Typen.- § 12 Stetige Abhängigkeit der Lösungen.- § 13 Abhängigkeit von Anfangswerten und Parametern.- IV. Lineare Differentialgleichungen.- § 14 Lineare Systeme.- § 15 Homogene lineare Systeme.- § 16 Inhomogene Systeme.- § 17 Systeme mit konstanten Koeffizienten.- § 18 Matrizenfunktionen. Inhomogene Systeme.- § 19 Lineare Differentialgleichungen n-ter Ordnung.- § 20 Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten.- V. Lineare Systeme im Komplexen.- § 21 Homogene lineare Systeme im regulären Fall.- § 22 Isolierte Singularitäten.- § 23 Schwach singuläre Stellen. Differentialgleichungen vom Fuchsschen Typ.- § 24 Reihenentwicklungen von Lösungen.- § 25 Lineare Differentialgleichungen zweiter Ordnung.- VI. Rand- und Eigenwertprobleme.- § 26 Randwertaufgaben.-§ 27 Das Sturm-Liouvillesche Eigenwertproblem.- § 28 Kompakte selbstadjungierte Operatoren im Hilbertraum. Der Entwicklungssatz.- VII. Asymptotisches Verhalten und Stabilität.- § 29 Stabilität.- § 30 Die Methode von Lyapunov.- A. Topologie.- B. Reelle Analysis.- C. Komplexe Analysis.- D. Funktionalanalysis.- Lösungen und Lösungshinweise zu ausgewählten Aufgaben.- Literatur.- Namen- und Sachverzeichnis.- Bezeichnungen.