E-Book, Englisch, Band 5, 387 Seiten
Reihe: Fractional Calculus in Applied Sciences and EngineeringISSN
Wang / Feckan / Feckan Fractional Hermite-Hadamard Inequalities
1. Auflage 2018
ISBN: 978-3-11-052244-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 5, 387 Seiten
Reihe: Fractional Calculus in Applied Sciences and EngineeringISSN
ISBN: 978-3-11-052244-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers and graduates in applied mathematicis and engineering
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Content:
Chapter 1 Introduction
1.1 Fractional Calculus via Application and Computation
1.2 Motivation of Fractional Hermite-Hadamard’s Inequality
1.3 Main Contents
Chapter 2 Preliminaries
2.1 Definitions of Special Functions and Fractional Integrals
2.2 Definitions of Convex Functions
2.3 Singular Integrals via Series
2.4 Elementary Inequalities
Chapter 3 Fractional Integral Identities
3.1 Identities involving Riemann-Liouville Fractional Integrals
3.2 Identities involving Hadamard Fractional Integrals
Chapter 4 Hermite-Hadamard’s inequalities involving Riemann-Liouville fractional integrals
4.1 Inequalities via Convex Functions
4.2 Inequalities via r-Convex Functions
4.3 Inequalities via s-Convex Functions
4.4 Inequalities via m-Convex Functions
4.5 Inequalities via (s, m)-convex Functions
4.6 Inequalities via Preinvex Convex Functions
4.7 Inequalities via (ß,m)-geometrically Convex Functions
4.8 Inequalities via geometrical-arithmetically s-Convex Functions
4.9 Inequalities via (a,m)-logarithmically Convex Functions
4.10 Inequalities via s-GodunovaLevin functions
4.11 Inequalities via AG(log)-convex Functions
Chapter 5 Hermite-Hadamard’s inequalities involving Hadamard fractional integrals
5.1 Inequalities via Convex Functions
5.2 Inequalities via s-e-ondition Functions
5.3 Inequalities via geometric-geometric co-ordinated Convex Function
5.4 Inequalities via Geometric-Geometric-Convex Functions
5.5 Inequalities via Geometric-Arithmetic-Convex Functions
References