Wang / Hu / Yuan | Engineering Plasticity | Buch | 978-1-119-23730-3 | www.sack.de

Buch, Englisch, 520 Seiten, Format (B × H): 154 mm x 220 mm, Gewicht: 1043 g

Wang / Hu / Yuan

Engineering Plasticity

Theory and Applications in Metal Forming
1. Auflage 2018
ISBN: 978-1-119-23730-3
Verlag: Wiley

Theory and Applications in Metal Forming

Buch, Englisch, 520 Seiten, Format (B × H): 154 mm x 220 mm, Gewicht: 1043 g

ISBN: 978-1-119-23730-3
Verlag: Wiley


An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries
- Provides a solid grounding in plasticity fundamentals and material properties
- Features models, theorems and analysis of processes and relationships related to plasticity, supported by extensive experimental data
- Offers a detailed discussion of recent advances and applications in metal forming

Wang / Hu / Yuan Engineering Plasticity jetzt bestellen!

Weitere Infos & Material


Preface xiii

1 Fundamentals of Classical Plasticity 1

1.1 Stress 1

1.1.1 The Concept of Stress Components 1

1.1.2 Description of the Stress State 2

1.1.2.1 Stresses on an Arbitrary Inclined Plane 2

1.1.2.2 Stress Components on an Oblique Plane 4

1.1.2.3 Special Stresses 6

1.1.2.4 Common Stress States 7

1.1.3 Stress Tensors and Deviatoric Stress Tensors 7

1.1.4 Mohr Stress Circles 9

1.1.4.1 Mohr Circles for a Two-Dimensional Stress System 9

1.1.4.2 Mohr Circles for a Three-Dimensional Stress System 12

1.1.5 Equations of Force Equilibrium 13

1.2 Strain 15

1.2.1 Nominal Strain and True Strain 15

1.2.2 Strain Components as Functions of Infinitesimal Displacements 17

1.2.3 The Maximum Shear Strains and the Octahedral Strains 20

1.2.4 Strain Rates and Strain Rate Tensors 21

1.2.5 Incompressibility and Chief Deformation Types 23

1.3 Yield Criteria 25

1.3.1 The Concept of Yield Criterion 25

1.3.2 Tresca Yield Criterion 26

1.3.3 Mises Yield Criterion 26

1.3.4 Twin Shear Stress Yield Criterion 27

1.3.5 Yield Locus and Physical Concepts of Tresca, Mises, and Twin Shear Stress Yield Criteria 27

1.3.5.1 Interpretation of Tresca Yield Criterion 29

1.3.5.2 Interpretation of Twin Shear Stress Yield Criterion 30

1.3.5.3 Interpretation of Mises Yield Criterion 31

1.4 A General Yield Criterion 33

1.4.1 Representation of General Yield Criterion 33

1.4.2 Yield Surface and Physical Interpretation 34

1.4.3 Simplified Yield Criterion 34

1.5 Classical Theory about Plastic Stress–Strain Relation 35

1.5.1 Early Perception of Plastic Stress Strain Relations 36

1.5.2 Concept of the Gradient-Based Plasticity and Its Relation with Mises Yield Criterion 37

1.5.2.1 Concept of the Plastic Potential 37

1.5.2.2 Physical Interpretation of the Plastic Potential 38

1.5.2.3 Physic


Z. R. Wang, Harbin Institute of Technology, China.

W. L. HU, Troy Design and Manufacturing Co., USA.

S. J. Yuan, Harbin Institute of Technology, China.

X. S. Wang, Harbin Institute of Technology, China.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.