Weltner | Mathematik für Physiker | E-Book | sack.de
E-Book

E-Book, Deutsch, 234 Seiten, eBook

Weltner Mathematik für Physiker

Basiswissen für das Grundstudium der Experimentalphysik Lehrbuch Band 2
10. Auflage 1994
ISBN: 978-3-322-85083-6
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

Basiswissen für das Grundstudium der Experimentalphysik Lehrbuch Band 2

E-Book, Deutsch, 234 Seiten, eBook

ISBN: 978-3-322-85083-6
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Weltner Mathematik für Physiker jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


13 Funktionen mehrerer Variablen, skalare Felder und Vektorfelder.- 13.1 Einleitung.- 13.2 Der Begriff der Funktion mehrerer Variablen.- 13.3 Das skalare Feld.- 13.4 Das Vektorfeld.- 13.5 Spezielle Vektorfelder.- 13.6 Übungsaufgaben.- 14 Partielle Ableitung, totales Differential und Gradient.- 14.1 Die partielle Ableitung.- 14.2 Das totale Differential.- 14.3 Der Gradient.- 14.4 Übungsaufgaben.- 15 Mehrfachintegrale, Koordinatensysteme.- 15.1 Mehrfachintegrale als Lösung von Summierungsaufgaben.- 15.2 Mehrfachintegrale mit konstanten Integrationsgrenzen.- 15.3 Zerlegung eines Mehrfachintegrals in ein Produkt von Integralen.- 15.4 Koordinaten.- 15.5 Anwendungen: Volumen und Trägheitsmoment.- 15.6 Mehrfachintegrale mit nicht konstanten Integrationsgrenzen.- 15.7 Kreisfläche in kartesischen Koordinaten.- 15.8 Übungsaufgaben.- 16 Parameterdarstellung, Linienintegral.- 16.1 Parameterdarstellung von Kurven.- 16.2 Differentiation eines Vektors nach einem Parameter.- 16.3 Das Linienintegral.- 16.4 Übungsaufgaben.- 17 Oberflächenintegrale.- 17.1 Der Vektorfluß durch eine Fläche.- 17.2 Das Oberflächenintegral.- 17.3 Berechnung des Oberflächenintegrals für Spezialfälle.- 17.4 Berechnung des Oberflächenintegrals im allgemeinen Fall.- 17.5 Fluß des elektrischen Feldes einer Punktladung durch eine Kugeloberfläche mit Radius R.- 17.6 Übungsaufgaben.- 18 Divergenz und Rotation.- 18.1 Divergenz eines Vektorfeldes.- 18.2 Integralsatz von Gauß.- 18.3 Rotation eines Vektorfeldes.- 18.4 Integralsatz von Stokes.- 18.5 Potential eines Vektorfeldes.- 18.6 Anhang.- 18.7 Übungsaufgaben.- 19 Koordinatentransformationen und Matrizen.- 19.1 Koordinatenverschiebungen — Translationen.- 19.2 Drehungen.- 19.3 Matrizenrechnung.- 19.4 Darstellung von Drehungen in Matrizenform.- 19.5Spezielle Matrizen.- 19.6 Inverse Matrix.- 19.7 Übungsaufgaben.- 20 Lineare Gleichungssysteme und Determinanten.- 20.1 Lineare Gleichungssysteme.- 20.2 Determinanten.- 20.3 Übungsaufgaben.- 21 Eigenwerte und Eigenvektoren.- 21.1 Eigenwerte von 2 · 2 Matrizen.- 21.2 Bestimmung von Eigenwerten.- 21.3 Eigenwerte und Eigenvektoren einer 3x3 Matrix.- 21.4 Eigenschaften von Eigenwerten und Eigenvektoren.- 21.5 Übungsaufgaben.- 22 Fourierreihen.- 22.1 Entwicklung einer periodischen Funktion in eine Fourierreihe.- 22.2 Beispiele für Fourierreihen.- 22.3 Die Fourierreihe für Funktionen beliebiger Periode T.- 22.4 Fourierreihe in spektraler Darstellung.- 22.5 Übungsaufgaben.- 23 Fourier-Integrale.- 23.1 Übergang von der Fourierreihe zum Fourier-Integral.- 23.2 Fourier-Transformationen.- 23.3 Verschiebungssatz.- 23.4 Diskrete Fourier-Transformation, Abtasttheorem.- 23.5 Fourier-Transformation der Gaußschen Funktion.- 23.6 Übungsaufgaben.- 24 Laplace-Transformationen.- 24.1 Integral-Transformationen, Laplace-Transformationen.- 24.2 Laplace-Transformation von Standardfunktionen und allgemeine Regeln.- 24.3 Lösung von linearen Differentialgleichungen mit konstanten Koeffizienten.- 24.4 Lösung von simultanen Differentialgleichungen mit konstanten Koeffizienten.- 24.5 Übungsaufgaben.- 25 Die Wellengleichungen.- 25.1 Wellenfunktionen.- 25.2 Die Wellengleichung.- 25.3 Übungsaufgaben.- Sachwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.