E-Book, Englisch, 358 Seiten, Web PDF
Williams / Lerche / Full Isotope Chronostratigraphy
1. Auflage 2013
ISBN: 978-1-4832-2061-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Theory and Methods
E-Book, Englisch, 358 Seiten, Web PDF
ISBN: 978-1-4832-2061-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
C. Ian Lerche is the author of more than 500 papers and has received numerous awards, including the Levorsen Award of the AAPG, the Nordic Professorship inPetroleum Geology, and the French Academie des Sciences Professorship in Geology. He has been a professor of geology in the Department of Geological Sciences at the University of South Carolina since 1984, and was associate chairman of the department 1985-1989. Between 1965-1981 he held positions of research associate, assistant professor, and associate professor at the University of Chicago. From 1981-1984 he worked as a senior scientist at Gulf Research and Development Co. He received a B.Sc. in physics in 1962 and a Ph.D. in astronomy in 1965 from the University of Manchester.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Isotope Chronostratigraphy: Theory and Methods;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;12
6;CHAPTER 1. INTRODUCTION;14
6.1;I. Rationale for a New Chemical Stratigraphy;14
6.2;II. The Model of Isotope Chronostratigraphy;18
6.3;III. The Format of This Synthesis;22
7;CHAPTER 2. PRINCIPLES OF INTERPRETATION;24
7.1;I. An Empirical Approach for Establishing Interwell Correlations and Zonations;24
7.2;II. Integration of Isotope Chronostratigraphy and Biostratigraphy;32
7.3;III. Effects of Diagenesis on Isotope Records;36
7.4;IV. Species Effects;38
8;CHAPTER 3. METHODOLOGY;42
8.1;I. Generation of the Stable Isotope Data;42
8.2;II. Preparation of Well Samples for Isotopic Analyses;43
8.3;III. Cost Analysis and Turnaround Time;49
8.4;IV. New Technological Developments;52
9;CHAPTER 4. THE TERTIARY OXYGEN ISOTOPE RECORD;54
9.1;I. Development of the Tertiary Isotope Record;54
9.2;II. Global d18O Isotopic Changes in Tertiary Marine Carbonates;56
9.3;III. Comparisons between the Nannofossil and Foraminiferal d18O Records;58
9.4;IV. Whole Rock (Bulk Sediment) Analyses and the Tertiary d18O Record;59
10;CHAPTER 5. THE TERTIARY CARBON ISOTOPE RECORD;64
10.1;I. The Foraminiferal d
18C Record;64
10.2;II. Comparison of the Foraminiferal Nannofossil and Bulk Sediment d
18C Records;65
11;CHAPTER 6. DETAILED STUDIES OF THE TERTIARY d18O AND d18C RECORDS BY EPOCH;68
11.1;I. Pleistocene d18O Records;68
11.2;II. Pliocene Isotope Records;82
11.3;III. Miocene Isotope Records;93
11.4;IV. Eocene and Oligocene Oxygen and Carbon Isotope Records;106
11.5;V. Isotope Records for the Paleocene and the Cretaceous–Tertiary Boundary;114
12;CHAPTER 7. STABLE ISOTOPIC EVIDENCE FOR AND AGAINST SEA LEVEL CHANGES DURING THE CENOZOIC;120
12.1;I. Introduction;120
12.2;II. Oxygen Isotopic Model for Cenozoic Sea Levels;123
12.3;III. d18O Chronostratigraphy, Gulf Coast Regional Unconformities, and Eustatic Sea Levels of the Plio-Pleistocene of Offshore Gulf of Mexico;127
12.4;IV. Conclusions and Recommendations;130
13;CHAPTER 8. PROSPECTS FOR APPLYING ISOTOPE CHRONOSTRATIGRAPHY TO EXPLORATION WELLS;132
13.1;I. Neogene Examples;132
13.2;II. Paleogene Examples;139
13.3;III. Mesozoic and Paleozoic Examples;142
14;CHAPTER 9. PALEOBATHYMETRIC MODELS USING THE d18O OF FORAMINIFERA;148
14.1;I. Basis of the Models;148
14.2;II. Distinguishing Eustatic from Tectonic Changes in Paleodepth;152
14.3;III. Distinguishing Uplift, Subsidence, and Progradation Changes in Paleodepth;154
14.4;IV. Summary;154
15;CHAPTER 10. GENERAL OVERVIEW OF THE EMPIRICAL APPROACHES TO ISOTOPE CHRONOSTRATIGRAPHY;158
16;CHAPTER 11. QUANTITATIVE METHODS OF ANALYSIS: THEORETICAL CONSIDERATIONS;160
17;CHAPTER 12. SEMBLANCE METHODS;164
18;CHAPTER 13. FILTER AND DECONVOLUTION TECHNIQUES;168
18.1;I. Least Squares Noise Minimization;169
18.2;II. The Common Signal Minimization Problem;170
18.3;III. The Location-Dependent Common Signal Problem;171
18.4;IV. The Magnitude of the Signal Problem;172
18.5;V. Maximum Likelihood;172
18.6;VI. Prediction Filters;173
18.7;VII. Relative Rates of Sedimentation;180
18.8;VIII. Matched Filters;184
19;CHAPTER 14. FREQUENCY DOMAIN METHODS;186
19.1;I. Noise Frequency Spectra;187
19.2;II. Autocorrelation and Cross-Correlation Spectral Methods;191
19.3;III. Spectral Ratio Methods;197
19.4;IV. Homomorphic Deconvolution;198
19.5;V. Phase Sensitive Detection of Isotopic Signals;208
20;CHAPTER 15. MAXIMUM ENTROPY AND Q - MODEL METHODS;222
20.1;I. Unbiased MEM;223
20.2;II. Biased MEM;226
20.3;III. End Members and Linear Unmixing;230
20.4;IV. Q-Model Types of Analysis;231
20.5;V. Summary;247
21;CHAPTER 16. NUMERICAL EXAMPLES AND CASE HISTORIES;250
22;CHAPTER 17. FILTER AND DECONVOLUTION METHODS;258
22.1;I. A Filter Response;258
22.2;II. Mapping Function Deconvolution, Noise, and Nonlinearity;260
23;CHAPTER 18. FREQUENCY DOMAIN METHODS;270
23.1;I. Linear Interpolation and Power Spectra;270
23.2;II. Autocorrelation and Cross-Correlation in Time;273
23.3;III. Window Effects on Power Spectra;275
23.4;IV. Homomorphic Deconvolution;277
23.5;V. Multispectral Wiener Filtering;279
23.6;VI. Phase Sensitive Detection—Noise Analysis;281
23.7;VII. Predictive Wiener Filtering;283
24;CHAPTER 19. MAXIMUM ENTROPY METHODS;286
24.1;I. Unbiased MEM;286
24.2;II. Biased MEM;287
24.3;III. QMODEL, EXTENDED QMODEL, and FUZZY QMODEL Unmixing;288
24.4;IV. End-Member Behaviors for EXTENDED and FUZZY QMODELS;290
25;CHAPTER 20. AN INTEGRATED APPLICATION OF MULTIPLE TECHNIQUES;300
25.1;I. Signal Processing Strategy;301
25.2;II. Brief Explanation of Data Processing Methods;303
25.3;III. Formulation of a TYPE Pleistocene ä1 âÏ Record with Time;304
25.4;IV. Comparison of the TYPE Record with Other Pleistocene ä1 80 Records;313
25.5;V. Summary;328
26;CHAPTER 21. SUMMARY;330
27;References;332
28;Index;356




