Wind / Hua | Rasch Measurement Theory Analysis in R | Buch | 978-0-367-77639-8 | sack.de

Buch, Englisch, 322 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 494 g

Reihe: Chapman & Hall/CRC The R Series

Wind / Hua

Rasch Measurement Theory Analysis in R


1. Auflage 2022
ISBN: 978-0-367-77639-8
Verlag: Chapman and Hall/CRC

Buch, Englisch, 322 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 494 g

Reihe: Chapman & Hall/CRC The R Series

ISBN: 978-0-367-77639-8
Verlag: Chapman and Hall/CRC


Rasch Measurement Theory Analysis in R provides researchers and practitioners with a step-by-step guide for conducting Rasch measurement theory analyses using R. It includes theoretical introductions to major Rasch measurement principles and techniques, demonstrations of analyses using several R packages that contain Rasch measurement functions, and sample interpretations of results.

Features:

- Accessible to users with relatively little experience with R programming

- Reproducible data analysis examples that can be modified to accommodate users’ own data

- Accompanying e-book website with links to additional resources and R code updates as needed

- Features dichotomous and polytomous (rating scale) Rasch models that can be applied to data from a wide range of disciplines

This book is designed for graduate students, researchers, and practitioners across the social, health, and behavioral sciences who have a basic familiarity with Rasch measurement theory and with R. Readers will learn how to use existing R packages to conduct a variety of analyses related to Rasch measurement theory, including evaluating data for adherence to measurement requirements, applying the dichotomous, Rating Scale, Partial Credit, and Many-Facet Rasch models, examining data for evidence of differential item functioning, and considering potential interpretations of results from such analyses.

Wind / Hua Rasch Measurement Theory Analysis in R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1 Introduction 2 Dichotomous Rasch Model 3 Evaluating the Quality of Measures 4 Rating Scale Model 5 Partial Credit Model 6 Many Facet Rasch Model 7 Basics of Differential Item Functioning


Stefanie A. Wind is an Associate Professor of Educational Measurement at the University of Alabama. Her primary research interests include the exploration of methodological issues in the field of educational measurement, with emphases on methods related to rater-mediated assessments, rating scales, Rasch models, item response theory models, and nonparametric item response theory, as well as applications of these methods to substantive areas related to education.

Cheng Hua is a Ph.D. candidate in Educational Measurement program at the University of Alabama. His primary research interests include Rasch Measurement theory, advanced regression models, Bayesian statistics, and visual learning tools (such as Mind Maps and Concept Maps). He enjoys applying his psychometric and statistical skills to address real-world research questions through interdisciplinary collaborations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.