Buch, Englisch, 561 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1014 g
ISBN: 978-3-031-81742-7
Verlag: Springer Nature Switzerland
This book covers up-to-date knowledge of how designs found in nature use tissue hierarchies to achieve optimal functions, and how these principles are applied in bioengineering. The hierarchy-based multiscale approach has the potential to drive novel biomaterial designs, advance tissue engineering and regeneration, assist in tissue-function integration, improve high-fidelity computational modeling aided by machine learning, and enhance the development of innovative characterization tools and methodologies. This book presents the latest high-impact research achievements in bioengineered and natural hierarchical systems within a clinical context. Our aim is two-fold: (i) to emphasize the importance of integrating and bridging bioengineering designs at various tissue hierarchical levels and (ii) to foster dialogue and collaboration among bioengineers, biomechanists, and clinicians.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Biomedizin, Medizinische Forschung, Klinische Studien
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Naturwissenschaften Chemie Chemie Allgemein
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
Weitere Infos & Material
Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.- Tissue engineering of vascular constructs.- Engineering the multiscale complexity of vascular networks.- Epicardial layer and endocardial layer as mechanical protective interfaces for cardiac function.- Dynamic remodeling in live cardiomyocytes.- Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.- Multiscale light-sheet for rapid assessing of cardiac architecture and function.- Spongiosa as an integrative interface for aortic valve trilayered structure.- Advances in experimental and computational biomechanics of the tricuspid heart valve.- Heterogeneous and multiscale mechanical behavior of aortic valve leaflets.- Multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.- Multiscale Mechanical Considerations for Polymeric Heart Valve Development.- The stabilization of elastin network in heart valve tissue engineering.- Glutaraldehyde cross-linked mitral valves.- Contribution of glycosaminoglycans to tendon mechanical properties.- Interfibrillar shear stress as the loading mechanism of collagen fibrils in tendon.- Tendon-to-bone Interface: structural-mechanical integration of enthesis.- Hierarchical collagen fiber formation for functional tendon, ligament, and meniscus replacement.- Tissue-engineered collagen graft using a novel load-bearing suture technique.- Tendon/Ligament repair with biomimetic and smart cellular constructs.- Tendon/Ligament-Like tissue via three-dimensional cyclic mechanical stretch culture system.




