Wu | Essentials of Pattern Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, 0 Seiten

Wu Essentials of Pattern Recognition

An Accessible Approach
Erscheinungsjahr 2020
ISBN: 978-1-108-75519-1
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Accessible Approach

E-Book, Englisch, 0 Seiten

ISBN: 978-1-108-75519-1
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This textbook introduces fundamental concepts, major models, and popular applications of pattern recognition for a one-semester undergraduate course. To ensure student understanding, the text focuses on a relatively small number of core concepts with an abundance of illustrations and examples. Concepts are reinforced with hands-on exercises to nurture the student's skill in problem solving. New concepts and algorithms are framed by real-world context and established as part of the big picture introduced in an early chapter. A problem-solving strategy is employed in several chapters to equip students with an approach for new problems in pattern recognition. This text also points out common errors that a new player in pattern recognition may encounter, and fosters the ability for readers to find useful resources and independently solve a new pattern recognition task through various working examples. Students with an undergraduate understanding of mathematical analysis, linear algebra, and probability will be well prepared to master the concepts and mathematical analysis presented here.

Wu Essentials of Pattern Recognition jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Notation; Part I. Introduction and Overview: 1. Introduction; 2. Mathematical background; 3. Overview of a pattern recognition system; 4. Evaluation; Part II. Domain-Independent Feature Extraction: 5. Principal component analysis; 6. Fisher's linear discriminant; Part III. Classifiers and Tools: 7. Support vector machines; 8. Probabilistic methods; 9. Distance metrics and data transformations; 10. Information theory and decision trees; Part IV. Handling Diverse Data Formats: 11. Sparse and misaligned data; 12. Hidden Markov model; Part V. Advanced Topics: 13. The normal distribution; 14. The basic idea behind expectation-maximization; 15. Convolutional neural networks; References; Index.


Wu, Jianxin
Jianxin Wu is a professor in the Department of Computer Science and Technology and the School of Artificial Intelligence at Nanjing University, China. He received his B.S. and M.S. degrees in computer science from Nanjing University and his Ph.D. degree in computer science from the Georgia Institute of Technology. Professor Wu has served as an area chair for the conference on Computer Vision and Pattern Recognition (CVPR), the International Conference on Computer Vision (ICCV), and the AAAI Conference on Artificial Intelligence, and he is an associate editor for the Pattern Recognition journal. His research interests are computer vision and machine learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.