Xu / Cui / Rekik | Machine Learning in Medical Imaging | E-Book | sack.de
E-Book

E-Book, Englisch, 247 Seiten

Reihe: Lecture Notes in Computer Science

Xu / Cui / Rekik Machine Learning in Medical Imaging

15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings, Part II
Erscheinungsjahr 2024
ISBN: 978-3-031-73290-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings, Part II

E-Book, Englisch, 247 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-73290-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the proceedings of the 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 6, 2024.

The 63 full papers presented in this volume were carefully reviewed and selected from 100 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging using artificial intelligence (AI) and machine learning (ML).

Xu / Cui / Rekik Machine Learning in Medical Imaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Robust Box Prompt based SAM for Medical Image Segmentation.- Multi-task Learning Approach for Intracranial Hemorrhage Prognosis.- Mitigating False Predictions In Unreasonable Body Regions.- UniFed: A Universal Federation of a Mixture of Highly Heterogeneous Medical Image Classification Tasks.- Tackling domain generalization for out-of-distribution endoscopic imaging.- Benchmarking Dependence Measures to Prevent Shortcut Learning in Medical Imaging.- Selective Classifier Based Search Space Shrinking for Radiographs Retrieval.- Pseudo-Rendering for Resolution and Topology-Invariant Cortical Parcellation.- Partially Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation.- VIS-MAE: An Efficient Self-Supervised Learning Approach on Medical Image Segmentation and Classification.- Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis.- Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images.- StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations.- Detection of Emerging Infectious Diseases in Lung CT based on Spatial Anomaly Patterns.- Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration.- Noise-robust onformal prediction for medical image classification.- Identifying Critical Tokens for Accurate Predictions in Transformer-based Medical Imaging Models.-Resource-efficient Medical Image Analysis with Self-adapting Forward-Forward Networks.- SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images.- Arges: Spatio-Temporal Transformer for Ulcerative Colitis Severity Assessment in Endoscopy Videos.- Characterizing the Histology Spatial Intersections between Tumor-infiltrating Lymphocytes and Tumors for Survival Prediction of Cancers Via Graph Contrastive Learning.-Identifying Nonalcoholic Fatty Liver Disease and Adanced Liver Fibrosis from MRI in UK Biobank.- Explainable and Controllable Motion Curve Guided Cardiac Ultrasound Video Generation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.