Yamakawa / Ohsaki | Stochastic Structural Optimization | Buch | 978-0-367-72040-7 | www.sack.de

Buch, Englisch, 266 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 412 g

Yamakawa / Ohsaki

Stochastic Structural Optimization


1. Auflage 2025
ISBN: 978-0-367-72040-7
Verlag: CRC Press

Buch, Englisch, 266 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 412 g

ISBN: 978-0-367-72040-7
Verlag: CRC Press


Stochastic Structural Optimization presents a comprehensive picture of robust design optimization of structures, focused on nonparametric stochastic-based methodologies. Good practical structural design accounts for uncertainty, for which reliability-based design offers a standard approach, usually incorporating assumptions on probability functions which are often unknown. By comparison, a worst-case approach with bounded support used as a robust design offers simplicity and a lower level of sensitivity. Linking structural optimization with these two approaches by a unified framework of non-parametric stochastic methodologies provides a rigorous theoretical background and high level of practicality. This text shows how to use this theoretical framework in civil and mechanical engineering practice to design a safe structure which accounts for uncertainty.

- Connects theory with practice in the robust design optimization of structures

- Advanced enough to support sound practical designs

This book provides comprehensive coverage for engineers and graduate students in civil and mechanical engineering.

Makoto Yamakawa is a Professor at Tokyo University of Science, and a member of the Advisory Board of the 2020 Asian Congress of Structural and Multidisciplinary Optimization.

Makoto Ohsaki is a Professor at Kyoto University, Japan, treasurer of the International Association for Shell & Spatial Structures and former President of the Asian Society for Structural and Multidisciplinary Optimization.

Yamakawa / Ohsaki Stochastic Structural Optimization jetzt bestellen!

Zielgruppe


Postgraduate and Professional

Weitere Infos & Material


1. Basic concepts and examples. 2. Stochastic optimization. 3. Random search-based optimization. 4. Order statistics-based robust design optimization. 5. Robust geometry and topology optimization. 6. Multi-objective robust optimization approach. 7. Surrogate-assisted and reliability-based optimization. Appendix.


Makoto Yamakawa is a Professor at Tokyo University of Science, and a member of the Advisory Board of the 2020 Asian Congress of Structural and Multidisciplinary Optimization.

Makoto Ohsaki is a Professor at Kyoto University, Japan, treasurer of the International Association for Shell & Spatial Structures and former President of the Asian Society for Structural and Multidisciplinary Optimization.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.