Yamanishi | Learning with the Minimum Description Length Principle | Buch | 978-981-99-1789-1 | www.sack.de

Buch, Englisch, 339 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 705 g

Yamanishi

Learning with the Minimum Description Length Principle


2023
ISBN: 978-981-99-1789-1
Verlag: Springer

Buch, Englisch, 339 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 705 g

ISBN: 978-981-99-1789-1
Verlag: Springer


This book introduces readers to the minimum description length (MDL) principle and its applications in learning. The MDL is a fundamental principle for inductive inference, which is used in many applications including statistical modeling, pattern recognition and machine learning. At its core, the MDL is based on the premise that “the shortest code length leads to the best strategy for learning anything from data.” The MDL provides a broad and unifying view of statistical inferences such as estimation, prediction and testing and, of course, machine learning.

The content covers the theoretical foundations of the MDL and broad practical areas such as detecting changes and anomalies, problems involving latent variable models, and high dimensional statistical inference, among others. The book offers an easy-to-follow guide to the MDL principle, together with other information criteria, explaining the differences between their standpoints. 

Written in a systematic, concise and comprehensive style, this book is suitable for researchers and graduate students of machine learning, statistics, information theory and computer science.
Yamanishi Learning with the Minimum Description Length Principle jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Information and Coding.- Parameter Estimation.- Model Selection.- Latent Variable Model Selection.- Sequential Prediction.- MDL Change Detection.- Continuous Model Selection.- Extension of Stochastic Complexity.- Mathematical Preliminaries.


Kenji Yamanishi is a Professor at the Graduate School of Information Science and Technology, University of Tokyo, Japan. After completing the master course at the Graduate School of University of Tokyo, he joined NEC Corporation in 1987. He received his doctorate (in Engineering) from the University of Tokyo in 1992 and joined the University faculty in 2009. His research interests and contributions are in the theory of the minimum description length principle, information-theoretic learning theory, and data science applications such as anomaly detection and text mining.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.