Buch, Englisch, 370 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g
19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part III
Buch, Englisch, 370 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g
Reihe: Lecture Notes in Artificial Intelligence
ISBN: 978-3-031-46670-0
Verlag: Springer Nature Switzerland
The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
Weitere Infos & Material
Pharmaceutical Data Analysis.- Drug-target interaction prediction based on drug subgraph fingerprint extraction strategy and subgraph attention mechanism.- Soft Prompt Transfer for Zero-Shot and Few-Shot Learning in EHR Understanding.- Graph Convolution Synthetic Transformer for Chronic Kidney Disease Onset Prediction.- MTFL: Multi-task feature learning with joint correlation structure learning for Alzheimer’s disease cognitive performance prediction.- Multi-Level Transformer for Cancer Outcome Prediction in Large-Scale Claims Data.- Individual Functional Network Abnormalities Mapping via Graph Representation-based Neural Architecture Search.- A novel application of a mutual information measure for analysing temporal changes in healthcare network graphs.- Drugs Resistance Analysis from Scarce Health Records via Multi-task Graph Representation.- Text Classification.- ParaNet:Parallel Networks with Pre-trained Models for Text Classification.- Open Text Classification Based on Dynamic Boundary Balance.- A Prompt Tuning Method for Chinese Medical Text Classification.- TabMentor: Detect Errors on Tabular Data with Noisy Labels.- Label-aware Hierarchical Contrastive Domain Adaptation for Cross-network Node Classification.- Semi-supervised classification based on Graph Convolution Encoder Representations from BERT.- Global Balanced Text Classification for Stable Disease Diagnosis.- Graph.- Dominance Maximization in Uncertain Graphs.- LAGCL: Towards Stable and Automated Graph Contrastive Learning.- Discriminative Graph-level Anomaly Detection via Dual-students-teacher Model.- Common-Truss-based Community Search on Multilayer Graphs.- Learning To Predict Shortest Path Distance.- Efficient Regular Path Query Evaluation with Structural Path Constraints.EnSpeciVAT: Enhanced SpeciVAT for Cluster Tendency Identification in Graphs.- Pessimistic Adversarially Regularized Learning for Graph Embedding.- M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive Learning.