Yao / Lingras / Wu | Rough Sets and Knowledge Technology | E-Book | sack.de
E-Book

E-Book, Englisch, 578 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

Yao / Lingras / Wu Rough Sets and Knowledge Technology

Second International Conference, RSKT 2007, Toronto, Canada, May 14-16, 2007, Proceedings
2007
ISBN: 978-3-540-72458-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Second International Conference, RSKT 2007, Toronto, Canada, May 14-16, 2007, Proceedings

E-Book, Englisch, 578 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-72458-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Yao / Lingras / Wu Rough Sets and Knowledge Technology jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited Papers.- Decision-Theoretic Rough Set Models.- Efficient Attribute Reduction Based on Discernibility Matrix.- Near Sets. Toward Approximation Space-Based Object Recognition.- Rough Set Foundations.- On Covering Rough Sets.- On Transitive Uncertainty Mappings.- A Complete Method to Incomplete Information Systems.- Information Concept Lattice and Its Reductions.- Homomorphisms Between Relation Information Systems.- Dynamic Reduction Based on Rough Sets in Incomplete Decision Systems.- Entropies and Co–entropies for Incomplete Information Systems.- Granular Computing Based on a Generalized Approximation Space.- A General Definition of an Attribute Reduct.- Multiple Criteria Decision Analysis.- Mining Associations for Interface Design.- Optimized Generalized Decision in Dominance-Based Rough Set Approach.- Monotonic Variable Consistency Rough Set Approaches.- Bayesian Decision Theory for Dominance-Based Rough Set Approach.- Ranking by Rough Approximation of Preferences for Decision Engineering Applications.- Applying a Decision Making Model in the Early Diagnosis of Alzheimer’s Disease.- Biometrics.- Singular and Principal Subspace of Signal Information System by BROM Algorithm.- Biometric Verification by Projections in Error Subspaces.- Absolute Contrasts in Face Detection with AdaBoost Cascade.- Voice Activity Detection for Speaker Verification Systems.- Face Detection by Discrete Gabor Jets and Reference Graph of Fiducial Points.- Iris Recognition with Adaptive Coding.- Kansei Engineering.- Overview of Kansei System and Related Problems.- Reduction of Categorical and Numerical Attribute Values for Understandability of Data and Rules.- Semi-structured Decision Rules in Object-Oriented Rough Set Models for Kansei Engineering.- Functional Data Analysis and ItsApplication.- Evaluation of Pictogram Using Rough Sets.- A Logical Representation of Images by Means of Multi-rough Sets for Kansei Image Retrieval.- Autonomy-Oriented Computing.- A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering with Automatic Model Selection.- A Memetic-Clustering-Based Evolution Strategy for Traveling Salesman Problems.- An Efficient Probabilistic Approach to Network Community Mining.- A New Approach to Underdetermined Blind Source Separation Using Sparse Representation.- Soft Computing in Bioinformatics.- Evolutionary Fuzzy Biclustering of Gene Expression Data.- Rough Clustering and Regression Analysis.- Rule Induction for Prediction of MHC II-Binding Peptides.- Efficient Local Protein Structure Prediction.- Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data.- Ubiquitous Computing and Networking.- Ubiquitous Customer Relationship Management (uCRM).- Towards the Optimal Design of an RFID-Based Positioning System for the Ubiquitous Computing Environment.- Wave Dissemination for Wireless Sensor Networks.- Two Types of a Zone-Based Clustering Method for Wireless Sensor Networks.- Rough Set Algorithms.- Set Approximations in Multi-level Conceptual Data.- Knowledge Reduction in Generalized Consistent Decision Formal Contexts.- Graphical Representation of Information on the Set of Reducts.- Minimal Attribute Space Bias for Attribute Reduction.- Two-Phase ?-Certain Reducts Generation.- Formal Concept Analysis and Set-Valued Information Systems.- Descriptors and Templates in Relational Information Systems.- ROSA: An Algebra for Rough Spatial Objects in Databases.- Knowledge Representation and Reasoning.- Learning Models Based on Formal Concept.- Granulation Based Approximate Ontologies Capture.- Fuzzy-ValuedTransitive Inclusion Measure, Similarity Measure and Application to Approximate Reasoning.- Model Composition in Multi-dimensional Data Spaces.- An Incremental Approach for Attribute Reduction in Concept Lattice.- Topological Space for Attributes Set of a Formal Context.- Flow Graphs as a Tool for Mining Prediction Rules of Changes of Components in Temporal Information Systems.- Approximation Space-Based Socio-Technical Conflict Model.- Genetic Algorithms.- Improved Quantum-Inspired Genetic Algorithm Based Time-Frequency Analysis of Radar Emitter Signals.- Parameter Setting of Quantum-Inspired Genetic Algorithm Based on Real Observation.- A Rough Set Penalty Function for Marriage Selection in Multiple-Evaluation Genetic Algorithms.- Multiple Solutions by Means of Genetic Programming: A Collision Avoidance Example.- Rough Set Applications.- An Approach for Selective Ensemble Feature Selection Based on Rough Set Theory.- Using Rough Reducts to Analyze the Independency of Earthquake Precursory Items.- Examination of the Parameter Space of a Computational Model of Acute Ischaemic Stroke Using Rough Sets.- Using Rough Set Theory to Induce Pavement Maintenance and Rehabilitation Strategy.- Descent Rules for Championships.- Rough Neuro Voting System for Data Mining: Application to Stock Price Prediction.- Counting All Common Subsequences to Order Alternatives.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.