Yoshida / Hagihara / Ebashi | Neurotransmitters, Receptors | E-Book | www.sack.de
E-Book

E-Book, Englisch, 342 Seiten, Web PDF

Yoshida / Hagihara / Ebashi Neurotransmitters, Receptors

Proceedings of the 8th International Congress of Pharmacology, Tokyo, 1981
1. Auflage 2013
ISBN: 978-1-4831-4847-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 8th International Congress of Pharmacology, Tokyo, 1981

E-Book, Englisch, 342 Seiten, Web PDF

ISBN: 978-1-4831-4847-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Advances in Pharmacology and Therapeutics II, Volume 2: Neurotransmitters-Receptors is the second of a six-volume compilation of the scientific papers of invited speakers of the Eighth International Congress of Pharmacology. Organized into seven parts, this book begins with an invited lecture on the kinetic analysis of the neuronal and extraneuronal uptake and metabolism of catecholamines. Subsequent parts discuss the regulation of receptor-mediated events; presynaptic receptors in the peripheral and central nervous system; neurotransmitters; and receptor antibodies. The isolated nervous systems in the research of neurotransmission and trophic interactions between nerve and muscle are also discussed.

Yoshida / Hagihara / Ebashi Neurotransmitters, Receptors jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Neurotransmitters Receptors;4
3;Copyright Page;5
4;Table of Contents;6
5;Introduction;10
6;Part 1: Kinetic Analysis of the Neuronal and Extraneuronal Uptake and Metabolism of Catecholamines;12
6.1;Chapter 1. Kinetic Analysis of the Neuronal and Extraneuronal Uptake and Metabolism of Catecholamines;14
6.1.1;ABSTRACT;14
6.1.2;KEYWORDS;14
6.1.3;1. INTRODUCTION;14
6.1.4;2. The neuronal pump and enzyme system;15
6.1.5;3. The rate constants for the efflux of metabolites of catecholamines;18
6.1.6;4. The extraneuronal pump and enzyme system;20
6.1.7;5. Are there different biophases for alpha- and beta-adrenoceptors?;24
6.1.8;6. Extraneuronal compartments as a site of action rather than as a site of loss;25
6.1.9;7. Conclusions;25
6.1.10;REFERENCES;26
7;Part 2: Regulation of Receptor-Mediated Events, including Sub- and Supersensitivity;30
7.1;Chapter 2. Chronic Antidepressant Administration and Changes in 3H-imipramine Binding and Brain Receptors;32
7.1.1;The high-affinity —3H-imipramine binding site;32
7.1.2;The effect of chronic tricyclic antidepressant administration on the binding of 3H-imipramine and other ligands;34
7.1.3;Effects of chronic administration of non-tricyclic antidepressant drugs;35
7.1.4;Effects of chronic and subacute applications of non-drug antidepressant therapies;36
7.1.5;Conclusions;37
7.1.6;REFERENCES;37
7.2;Chapter 2. Up- and Down-regulation of Noradrenergic Receptor Systems in Brain: Molecular Mechanisms and Physiological Significance;40
7.2.1;ABSTRACT;40
7.2.2;KEY WORDS;40
7.2.3;THE NOREPINEPHRINE (NE) RECEPTOR COUPLED ADENYLATE CYCLASE SYSTEM IN BRAIN TISSUE;41
7.2.4;CHANGES IN SENSITIVITY OF THE NE RECEPTOR COUPLED ADENYLATE CYCLASE SYSTEM IN BRAIN AS A CONSEQUENCE OF CHANGES IN NORADRENERGIC INPUT;41
7.2.5;MOLECULAR MECHANISMS UNDERLYING SUPERSENSITIVITY AND SUBSENSITIVITY OF THE NE RECEPTOR COUPLED ADENYLATE CYCLASE SYSTEM IN BRAIN;43
7.2.6;CONCLUSIONS;46
7.2.7;ACKNOWLEDGEMENTS;47
7.2.8;REFERENCES;47
7.3;Chapter 3. Dopamine Receptors and Dopaminergic Supersensitivity;52
7.3.1;1. TERMINOLOGY FOR DOPAMINE-SENSITIVE SITES;52
7.3.2;2. BEHAVIOURAL DOPAMINERGIC SUPERSENSITIVITY AFTER LONG-TERM NEUROLEPTICS;52
7.3.3;3. BIOCHEMICAL AND ELECTROPHYSIOLOGICAL ASPECTS OF DOPAMINERGIC SUPERSENSITIVITY;53
7.3.4;4. DOPAMINE RECEPTORS AND NEUROLEPTIC-INDUCED DOPAMINERGIC SUPERSENSITIVITY;55
7.3.5;5. DOPAMINERGIC SUPERSENSITIVITY AFTER DENERVATION OF DOPAMINE NEURONES;55
7.3.6;6. RELATION BETWEEN DENSITY OF D2 RECEPTORS AND DOPAMINE SENSITIVITY;56
7.3.7;7. REVERSAL OF ELEVATED D2 RECEPTORS: EFFECTS OF DOPAMINE AGONISTS;57
7.3.8;ACKNOWLEDGEMENTS;58
7.3.9;REFERENCES;58
7.4;Chapter 4. Regulation of Acetylcholine Receptors;62
7.4.1;ABSTRACT;62
7.4.2;KEYWORDS;62
7.4.3;INTRODUCTION;62
7.4.4;REFERENCES;65
7.5;Chapter 5. Lipids and the Receptor Mediated Release of Histamine;68
7.5.1;ABSTRACT;68
7.5.2;KEY WORDS;68
7.5.3;INTRODUCTION;68
7.5.4;PHOSPHOLIPID METHYLATION IN MEMBRANES;69
7.5.5;PHOSPHOLIPID METHYLATION AND RELEASE OF HISTAMINE FROM MAST CELLS;70
7.5.6;RBL VARIANTS, PHOSPHOLIPID METHYLATION AND HISTAMINE RELEASE;75
7.5.7;CONCLUSION;77
7.5.8;REFERENCES;77
7.6;Chapter 6. Role of Phospholipid in the Transmitter-Induced Synthesis of Cyclic GMP in Nervous Tissue;80
7.6.1;ABSTRACT;80
7.6.2;KEYWORDS;80
7.6.3;INTRODUCTION;80
7.6.4;RESULTS;81
7.6.5;DISCUSSION;87
7.6.6;ACKNOWLEDGMENT;88
7.6.7;REFERENCES;88
8;Part 3: Presynaptic Receptors in the Peripheral and Central Nervous System;90
8.1;Chapter 7. The Role of Presynaptic Receptors in the Modulation of Neurotransmission;92
8.1.1;ABSTRACT;92
8.1.2;KEYWORDS;92
8.1.3;INTRODUCTION;92
8.1.4;CONCLUSIONS;100
8.1.5;REFERENCES;101
8.2;Chapter 8. Cholinergic-Adrenergic Interactions at the Presynaptic Level as Studied in the Heart;104
8.2.1;KEY WORDS;104
8.2.2;INTRODUCTION;104
8.2.3;METHOD: THE ISOLATED PERFUSED RABBIT ATRIA PREPARATION;106
8.2.4;RESULTS AND DISCUSSION;109
8.2.5;ACKNOWLEDGEMENTS;113
8.2.6;REFERENCES;113
8.3;Chapter 9. Evidence for Transsynaptic Modulation of Adrenergic Transmitter Secretion;114
8.3.1;ABSTRACT;114
8.3.2;KEYWORDS;114
8.3.3;INTRODUCTION;114
8.3.4;PROSTAGLANDIN E2 AS TRANSSYNAPTIC MODULATOR OF NORADRENALINE SECRETION;115
8.3.5;ADENOSINE AS TRANSSYNAPTIC MODULATOR OF NORADRENALINE SECRETION;116
8.3.6;SYNAPTIC AUTOINHIBITION VERSUS TRANSSYNAPTIC MODULATION OF NORADRENALINE SECRETION;116
8.3.7;ACKNOWLEDGEMENTS;119
8.3.8;REFERENCES;120
8.4;Chapter 10. Site(s) and Ionic Mechanisms in Facilitation and a-Autoinhibition of 3H-Noradrenaline Secretion in Guinea-Pig Vas Deferens;122
8.4.1;ABSTRACT;122
8.4.2;KEYWORDS;122
8.4.3;INTRODUCTION;122
8.4.4;METHODS;124
8.4.5;RESULTS AND DISCUSSION;124
8.4.6;CONCLUSIONS;130
8.4.7;REFERENCES;131
8.5;Chapter 11. The Time Course of the Development and Persistence of the Autoinhibitory Effect in Noradrenergic Transmission;132
8.5.1;ABSTRACT;132
8.5.2;INTRODUCTION;132
8.5.3;METHODS;133
8.5.4;RESULTS;134
8.5.5;DISCUSSION;137
8.5.6;REFERENCES;140
8.6;Chapter 12. Presynaptic Autoreceptors;142
8.6.1;ABSTRACT;142
8.6.2;KEYWORDS;142
8.6.3;INTRODUCTION;142
8.6.4;BASIC EVIDENCE;143
8.6.5;FURTHER ANALYSIS;144
8.6.6;RECEPTOR COMPARISON;146
8.6.7;ACKNOWLEDGEMENT;148
8.6.8;REFERENCES;148
9;Part 4: Neurotransmitters: New Concepts and Strategies;152
9.1;Chapter 13. In vitro Analysis of Transmitters:the Brain;154
9.1.1;ABSTRACT;154
9.1.2;INTRODUCTION;155
9.1.3;INTRACELLULAR RECORDING;156
9.1.4;CONCLUDING REMARKS;161
9.1.5;REFERENCES;161
9.2;Chapter 14. Modulation of Substance P Release and Voltage-Dependent Ion Channels in Primary Sensory Neurons;166
9.2.1;Abstract;166
9.2.2;Key words;166
9.2.3;Substance P as a possible transmitter in sensory neurons;167
9.2.4;Inhibition of substance P release from sensory neurons;169
9.2.5;Enhancement of substance P release from sensory neurons;170
9.2.6;Chemosensitivity of sensory neurons in dissociated cell culture;171
9.2.7;Discussion;174
9.2.8;REFERENCES;175
9.3;Chapter 15. Monoclonal Antibodies and Neurotransmitters;178
9.3.1;ABSTRACT;178
9.3.2;KEYWORDS;178
9.3.3;INTRODUCTION;178
9.3.4;METHODS;179
9.3.5;ACKNOWLEDGEMENTS;185
9.3.6;REFERENCES;186
9.4;Chapter 16. Functional Implications of Coexistence of Peptides and Classical Transmitters: Studies on Exocrine Glands;188
9.4.1;ABSTRACT;188
9.4.2;KEY WORDS;188
9.4.3;INTRODUCTION;189
9.4.4;ESTABLISHMENT OF PEPTIDE-CLASSICAL TRANSMITTER COEXISTENCE;189
9.4.5;SUBCELLULAR STORAGE OF VIP AND ACETYLCHOLINE;190
9.4.6;SUPPLY OF VIP AND ACTEYLCHOLINE TO NERVE ENDINGS;192
9.4.7;RELEASE OF VIP AND ACETYLCHOLINE UPON NERVE STIMULATION;192
9.4.8;EFFECTS OF PHARMACOLOGICAL TREATMENT;192
9.4.9;EFFECTS OF EXOGENOUSLY ADMINISTERED VIP AND ACETYLCHOLINE;193
9.4.10;INACTIVATION MECHANISMS;195
9.4.11;VIP – A COEXISTING TRANSMITTER OR MODULATOR?;195
9.4.12;FUNCTIONAL ASPECTS ON THE APP-LIKE PEPTIDE IN NORADRENERGIC NEURONS;196
9.4.13;ACKNOWLEDGEMENTS;196
9.4.14;REFERENCES;196
9.5;Chapter 17. Recombinant DNA Strategies of Neurotransmitter Research;200
9.5.1;SUMMARY;200
9.5.2;INTRODUCTION;200
9.5.3;MATERIALS AND METHODS;202
9.5.4;RESULTS;202
9.5.5;REFERENCES;207
10;Part 5: Prospectives on Receptor Antibodies;210
10.1;Chapter 18. Acetylcholine Receptor Antibodies;212
10.1.1;ABSTRACT;212
10.1.2;KEYWORDS;212
10.1.3;STRUCTURE AND FUNCTION OF AChR;214
10.1.4;MONOCLONAL ANTIBODIES;215
10.1.5;CONCLUSION;217
10.1.6;REFERENCES;218
10.2;Chapter 19. Insulin Receptor Structure and Antibodies;220
10.2.1;ABSTRACT;220
10.2.2;KEYWORDS;220
10.2.3;INTRODUCTION;220
10.2.4;REFERENCES;225
10.3;Chapter 20. Thyrotropin Receptor Antibodies;228
10.3.1;ABSTRACT;228
10.3.2;INTRODUCTION;229
10.3.3;REFERENCES;237
10.4;Chapter 21. Distinct Characterstics of IgM-Fc and IgG-Fc Receptors in Nature, Expression and Modulation;240
10.4.1;ABSTRACT;240
10.4.2;KEYWORDS;240
10.4.3;INTRODUCTION;240
10.4.4;DIFFERENT EXPRESSIONS OF FcµR and Fc.R IN CULTURE;241
10.4.5;SUSCEPTIBILITY TO ENZYMATIC DEGRADATION AND MODULATION BY METABOLIC INHIBITORS OF FcµR and Fc.R;242
10.4.6;DIFFERENT SENSITIVITY OF Tµ AND T. CELLS TO CORTICOSTEROID AND INVERTED CIRCADIAN RHYTHMS RELATED WITH PLASMA CORTICOSTEROID LEVELS;244
10.4.7;EFFECT OF INTERFERON ON THE EXPRESSIONS OF FcµR AND Fc.R;245
10.4.8;CORRELATION OF FcR MODIFICATIONS AND MODULATIONS OF IMMUNE RESPONSES BY INTERFERON;247
10.4.9;SUMMARY;248
10.4.10;REFERENCES;249
11;Part 6: Isolated Nervous Systems in the Research of Neurotransmission;252
11.1;Chapter 22. Isolated Nervous Systems in the Research of Neurotransmission;254
11.2;Chapter 23. Morphological and Electrophysiological Properties of Dissociated Retinal Neurons;256
11.2.1;ABSTRACT;256
11.2.2;KEYWORDS;256
11.2.3;INTRODUCTION;256
11.2.4;METHODS;257
11.2.5;RESULTS;257
11.2.6;ACKNOWLEDGEMENT;264
11.2.7;REFERENCES;264
11.3;Chapter 24. Electrophysiology of Mammalian Spinal Cord and Sympathetic Ganglia in vitro;266
11.3.1;ABSTRACT;266
11.3.2;KEYWORDS;266
11.3.3;INTRODUCTION;266
11.3.4;SPINAL CORD PREPARATION ISOLATED FROM THE NEWBORN RAT;266
11.3.5;PREVERTEBRAL SYMPATHETIC GANGLIA ISOLATED FROM THE GUINEA PIG;270
11.3.6;ACKNOWLEDGEMENT;271
11.3.7;REFERENCES;271
11.4;Chapter 25. Electrophysiological and Pharmacological Investigation of Superfused and Intraarterially Perfused Spinal Cord Preparations of the Kitten;272
11.4.1;ABSTRACT;272
11.4.2;KEYWORDS;272
11.4.3;THE USE OP THE PERFUSED KITTEN'S SPINAL OORD;272
11.4.4;MODE OP JUNCTIONAL TRANSMISSION;275
11.4.5;SPONTANEOUS SYNAPTIC ACTIVITY;275
11.4.6;QUANTAL NATURE OP EVOKED RELEASE;279
11.4.7;REFERENCES;279
11.5;Chapter 26. Dendrodendritic Inhibition Studied with Intracellular Recording;280
11.5.1;ABSTRACT;280
11.5.2;KEYWORDS;280
11.5.3;INTRODUCTION;280
11.5.4;RESULTS;281
11.5.5;DISCUSSION;283
11.5.6;REFERENCES;284
11.6;Chapter 27. Quantal Nature of Excitatory Postsynaptic Potentials in the Hippocampus;286
11.6.1;ABSTRACT;286
11.6.2;KEYWORDS;286
11.6.3;RECORDING OF ELECTRICAL ACTIVITY FROM BRAIN SLICES;286
11.6.4;ULTRASTRUCTURE AND ATP CONTENTS OF BRAIN SLICES;287
11.6.5;ELECTRICAL ACTIVITIES OF SLICES PREPARED FROM OTHER PORTIONS OF THE MAMMALIAN BRAIN;287
11.6.6;QUANTAL ANALYSIS OF THE EPSP'S;288
11.6.7;GENERAL CONCUSIONS;289
11.6.8;ACKNOWLEDGMENT;289
11.6.9;REFERENCES;289
12;Part 7: Trophic Interactions between Nerve and Muscle;292
12.1;Chapter 28. Studies on Denervation, Disuse and Motor Nerve Sprouting in Mammalian Muscle;294
12.1.1;ABSTRACT;294
12.1.2;KEYWORDS;294
12.1.3;INTRODUCTION;294
12.1.4;RESULTS AND DISCUSSION;295
12.1.5;ACKNOWLEDGEMENT;300
12.1.6;REFERENCES;300
12.2;Chapter 29. Sciatin: Purification, Characterization, Localization and Biological Properties of a Myotrophic Protein from Sciatic Nerves;304
12.2.1;ABSTRACT;304
12.2.2;KEYWORDS;304
12.2.3;INTRODUCTION;304
12.2.4;PURIFICATION AND CHARACTERIZATION OF SCIATIN;305
12.2.5;PRODUCTION OF SPECIFIC ANTIBODIES AGAINST SCIATIN;306
12.2.6;PRESENCE OF SCIATIN IN CHICK EMBRYO EXTRACT;306
12.2.7;IMMUNOCYTOCHEMICAL LOCALIZATION OF SCIATIN IN CHICKEN NEURAL TISSUES;306
12.2.8;TISSUE DISTRIBUTION, AXONAL TRANSPORT AND RELEASE OF SCIATIN;308
12.2.9;PRESENCE OF SCIATIN IN CHICKEN SERUM;308
12.2.10;ACKNOWLEDGEMENTS;309
12.2.11;REFERENCES;309
12.3;Chapter 30. The Neurotrophic Substance Affecting Muscle Membrane Properties Responsible for the Generation of Action Potential;312
12.3.1;ABSTRACT;312
12.3.2;KEYWORDS;312
12.3.3;INTRODUCTION;312
12.3.4;BIOASSAY OF TROPHIC ACTIVITY;313
12.3.5;DISTRIBUTION OF TROPHIC ACTIVITY IN VARIOUS TISSUES;314
12.3.6;PARTIAL PURIFICATION OF TROPHIC SUBSTANCE;315
12.3.7;EFFECTS OF TROPHIC SUBSTANCE ON DEVELOPING MYOTUBES;315
12.3.8;PROPERTIES OF TROPHIC SUBSTANCE;317
12.3.9;ACKNOWLEDGEMENT;317
12.3.10;REFERENCES;317
12.4;Chapter 31. Synaptic Repression at Cholinergic Synapses in Tissue Culture;318
12.4.1;ABSTRACT;318
12.4.2;KEYWORDS;318
12.4.3;INTRODUCTION;318
12.4.4;HYBRID-MYOTUBE SYNAPSES: EFFECTS OF DEPOLARIZATION;319
12.4.5;CILIARY NEURON-MYOTUBE SYNAPSES: EFFECTS OF CELLULAR COMPETITION;320
12.4.6;DISCUSSION;321
12.4.7;ACKNOWLEDGMENTS;322
12.4.8;REFERENCES;323
12.5;Chapter 32. Facilitation in vitro Growth of Neurites from Central and Ganglionic Neurons by Factors in Conditioned Medium, Serum and Tissue;324
12.5.1;ABSTRACT;324
12.5.2;KEYWORDS;324
12.5.3;ACKNOWLEDGEMENT;329
12.5.4;REFERENCES;329
13;Index;330



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.