Buch, Englisch, Format (B × H): 152 mm x 229 mm
Buch, Englisch, Format (B × H): 152 mm x 229 mm
ISBN: 978-0-443-27672-9
Verlag: Elsevier Science & Technology
Integrative Sensing Strategies for Disaster Management explores the synergy between airborne remote sensing and social data in addressing disaster management. This book provides a framework for leveraging diverse data sources to enhance response and resilience; detailed chapters cover the fundamentals of remote sensing, data integration techniques, and ethical implications, showcasing practical case studies in urban flooding, air quality monitoring, and pandemic evaluation. The book is an essential resource for postgraduates, PhD students, researchers, and professors in Earth observation and disaster management. It advances understanding of integrated sensing technologies by addressing current challenges and emerging trends, empowering practitioners to implement innovative solutions.
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Geologie
- Geowissenschaften Geographie | Raumplanung Geodäsie, Kartographie, GIS, Fernerkundung
- Geowissenschaften Geologie GIS, Geoinformatik
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziale Gruppen/Soziale Themen Soziale Folgen von Katastrophen
- Geowissenschaften Umweltwissenschaften Naturgewalten & Katastrophen
Weitere Infos & Material
1. Introduction to Integrated Sensing in Disaster Management
2. Fundamentals of Airborne Remote Sensing
3. Social Data as a Disaster Management Tool
4. Data Integration and Analysis
5. Implementing Sensing Technologies in Disaster Zones
6. Policy and Ethical Considerations of Remote Sensing of Disasters
7. Air Quality Monitoring and Alarming Systems with Satellite Images and Twitter Data in New Jersey
8. Urban Flooding and Public Engagement with Optical and Social Sensing
9. Evaluation During COVID19 Pandemic in China - City-Scale Analysis with Nighttime Light Data and Baidu Search Index
10. Lead Exposure in Urban Environments - Integrating Satellite Images, Social Sensing, and System Dynamics Simulative Models in Newark, NJ
11. Future Directions and Innovations