E-Book, Englisch, 522 Seiten
Zhou / Wang Scanning Microscopy for Nanotechnology
1. Auflage 2007
ISBN: 978-0-387-39620-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Techniques and Applications
E-Book, Englisch, 522 Seiten
ISBN: 978-0-387-39620-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.
Autoren/Hrsg.
Weitere Infos & Material
1;Contributors;5
2;Preface;8
3;Contents;10
4;Fundamentals of Scanning Electron Microscopy;14
4.1;1. Introduction;14
4.1.1;1.1. Resolution and Abbe's Equation;14
4.2;2. Configuration of Scanning Electron Microscopes;22
4.2.1;2.1. Electron Guns;22
4.2.2;2.2. Electron Lenses;28
4.2.3;2.3. Column Parameters;29
4.2.4;2.4. Image Formation;35
4.2.5;2.5. Vacuum System;42
4.3;3. Specimen Preparation;45
4.3.1;3.1. Procedures for High-Resolution SEM of Bioorganic Specimens;45
4.3.2;3.2. Specimen Fixation and Drying Methods;46
4.3.3;3.3. Dehydration and Air drying;47
4.3.4;3.4. Freeze Drying;47
4.3.5;3.5. Critical Point Drying;48
4.3.6;3.6. Metal Coating;48
4.3.7;3.7. Structural HRSEM Studies of Chemically Fixed CPD- Processed Bulk Biological Tissue;49
4.4;4. Summary;52
4.5;References;52
5;Electron Backscatter Diffraction ( EBSD) Technique and Materials Characterization Examples;54
5.1;1. Introduction;54
5.1.1;1.1. History;54
5.1.2;1.2. How It Works?;59
5.2;2. Data Measurement;64
5.2.1;2.1. Phase;64
5.2.2;2.2. Match Unit;65
5.2.3;2.3. Orientation;65
5.2.4;2.4. Mean Angular Deviation;66
5.2.5;2.5. Band Contrast;66
5.2.6;2.6. Band Slope;66
5.3;3. Data Analysis;67
5.3.1;3.1. Grain Size Analysis;67
5.3.2;3.2. EBSD Maps;68
5.4;4. Applications;74
5.4.1;4.1. Friction-Stir Welded Aluminum Alloy;74
5.4.2;4.2. Deformed FeÒAl Intermetallic Alloy;76
5.4.3;4.3. Platinum Thin Film;77
5.4.4;4.4. Copper Thin Film;81
5.4.5;4.5. Aluminum Thin Film;84
5.5;5. Current Limitations and Future ;87
5.5.1;5.1. Spatial Resolution;87
5.5.2;5.2. Angular Resolution;88
5.5.3;5.3. Speed;88
5.6;6. Conclusion;88
5.7;References;88
6;X-ray Microanalysis in Nanomaterials;89
6.1;1. Introduction;89
6.1.1;1.1. X-ray Signal Generation;90
6.1.2;1.2. X-ray Signal Detection;92
6.1.3;1.3. EDS Parameters;94
6.1.4;1.4. X-ray Artifacts;98
6.2;2. Monte Carlo Modeling of Nanomaterials;100
6.3;3. Case Studies ;104
6.3.1;3.1. A Computer Chip;104
6.3.2;3.2. Nanowire;107
6.3.3;3.3. Nanoparticles;108
6.4;4. Summary;113
6.5;References;113
7;Low kV Scanning Electron Microscopy;114
7.1;1. Introduction;114
7.2;2. Electron Generation and Accelerating Voltage;116
7.3;3. "Why Use Low kV"?;118
7.4;4. Using Low kV;125
7.5;5. Conclusion;132
7.6;References;132
8;E-Beam Nanolithography Integrated with Scanning Electron Microscope;133
8.1;1. Introduction;133
8.1.1;1. Introduction;133
8.1.2;1.2. SEM Lithography System Considerations;135
8.1.3;1.3. SEM Connections;137
8.2;2. Materials and Processing Preparation;140
8.2.1;2.1. Substrates;140
8.2.2;2.2. Resists;141
8.2.3;2.3. Spin Coating;145
8.3;3. Pattern Generation;145
8.3.1;3.1. Design Guidelines;146
8.3.2;3.2. System Configuration;147
8.3.3;3.3. Microscope Setup;149
8.4;4. Pattern Processing;150
8.4.1;4.1. Developing;150
8.4.2;4.2. Coating and Liftoff;150
8.4.3;4.3. Etching;153
8.4.4;4.4. Pattern Checking and Common Errors;153
8.5;5. E-beam Nanolithography Applications in Nanotechnology;156
8.5.1;5.1. Nanotransistors;156
8.5.2;5.2. Nanosensors;158
8.5.3;5.3. Magnetic Nanodevices;159
8.5.4;5.4. Biological Applications;160
8.6;6. Summary;161
8.7;References;161
9;Scanning Transmission Electron Microscopy for Nanostructure Characterization;165
9.1;1. Introduction;165
9.2;2. Imaging in the Scanning Transmission Electron Microscope;168
9.2.1;2.1. Probe Formation;170
9.2.2;2.2. Image Contrast;176
9.3;3. Spectroscopic Imaging;186
9.4;4. 3D Imaging;189
9.5;5. Recent Applications to Nanostructure Characterization ;190
9.5.1;5.1. Nanotubes;190
9.5.2;5.2. Nanocatalysis;194
9.5.3;5.3. La-Stabilization of Supports;195
9.5.4;5.4. Semiconductor Nanocrystals;196
9.5.5;5.5. Magnetic Nanoparticles;198
9.5.6;5.6. ZnO Nanorods;199
9.5.7;5.7. Nanoscale Phase Separation in Complex Oxides;200
9.6;6. Future Directions;201
9.7;References;202
10;Introduction to In Situ Nanomanipulation for Nanomaterials Engineering;205
10.1;1. Introduction;205
10.2;2. SEM Contamination;206
10.2.1;2.1. Preventing Contamination;209
10.2.2;2.2. Removing Contamination;209
10.3;3. Types of Nanomanipulators;210
10.3.1;3.1. Homebuilt Units;210
10.4;4. End Effectors;213
10.4.1;4.1. Probes;213
10.4.2;4.2. Cantilevered Probes;217
10.4.3;4.3. MEMS Grippers;217
10.5;5. Applications of Nanomanipulators;218
10.5.1;5.1. Nanopositioning;218
10.5.2;5.2. Mechanical Probing of Nanostructures;220
10.5.3;5.3. Electrical Probing;223
10.5.4;5.4. IC Probing;228
10.5.5;5.5. Semiconductor Coupon Extraction;231
10.5.6;5.6. In Situ TEM Manipulation;231
10.6;6. Summary;236
10.7;References;236
11;Applications of Focused Ion Beam and DualBeam for Nanofabrication;238
11.1;1. Introduction;238
11.2;2. Onboard Digital Patterning with the Ion Beam;239
11.3;3. FIB Milling or CVD Deposition with Bitmap Files;243
11.4;4. Onboard Digital Patterning with the Electron Beam;244
11.5;5. Automation for Nanometer Control;246
11.6;6. Direct Fabrication of Nanoscale Structures;247
11.7;7. Summary;247
11.8;References;248
12;Nanowires and Carbon Nanotubes;250
12.1;1. Introduction;250
12.2;2. III-V Compound Semiconductors Nanowires;250
12.3;3. II-VI Compound Semiconductors Nanowires;263
12.4;4. Elemental Nanowires;273
12.5;5. Carbon Nanotubes;280
12.5.1;5.1. Multiwalled Carbon Nanotubes;281
12.5.2;5.2. Single-Walled Carbon Nanotubes;283
12.5.3;5.3 Precision Cutting Carbon Nanotubes;289
12.6;6. Conclusions;291
12.7;References;291
13;Photonic Crystals and Devices;294
13.1;1. Introduction;294
13.1.1;1.1. Photonic Crystal: What is it?;294
13.1.2;1.2. Physical Background and Band Gaps of Photonic Crystal [ 5];295
13.1.3;1.3. Overview of the Applications of Photonic Crystals;297
13.2;2. SEM Imaging of Photonic Crystals;302
13.2.1;2.1. 2D Photonic Crystals;302
13.2.2;2.2. 3D Photonic Crystals;306
13.3;3. Fabrication of Photonic Crystals in SEM;311
13.3.1;3.1. Micromanipulation System in SEM;311
13.3.2;3.2. Photonic Crystals Fabricated by Micromanipulation;313
13.4;4. Summary;315
13.5;References;316
14;Nanoparticles and Colloidal Self- assembly;319
14.1;1. Introduction;319
14.2;2. Metallic Nanoparticles;320
14.3;3. Mesoporous and Nanoporous Metal Nanostructures;335
14.4;4. Nanocrystalline Oxides;342
14.4.1;4.1. Nanocrystalline Oxides for Optical Applications;342
14.4.2;4.2. Nanocrystalline Magnetic Oxides;354
14.5;5. Nanostructured Semiconductor and Thermoelectric Materials;360
14.6;6. Conclusions;366
14.7;References;367
15;Nano-building Blocks Fabricated through Templates;370
15.1;1. Introduction;370
15.2;2. Materials and Methods ;371
15.2.1;2.1. Fabrication of Porous Membranes;371
15.2.2;2.2. Synthesis of 3D Colloid Crystals;373
15.2.3;2.3. Electrochemical Deposition;373
15.2.4;2.4. SEM and TEM Observation;373
15.3;3. Nano-Building Blocks ;374
15.3.1;3.1. Nanowires from Porous Templates;374
15.3.2;3.2. Nanotubes from Glue Wire-Modified Templates;375
15.3.3;3.3. Nanowires with Structured Tips from Nanotube- Modified Templates;377
15.3.4;3.4. Colloid Crystal Wires and Porous Wires from Directed Assemblies;379
15.3.5;3.5. 1D, 2D, and 3D Inverse Colloid Crystals from 3D Colloid Crystals;386
15.3.6;3.6. Fabrication of 3D Metal Sphere Colloid Crystals from Inverse Colloid Crystals;391
15.4;4. Conclusions;393
15.5;Acknowledgements;393
15.6;References;394
16;One-dimensional Wurtzite Semiconducting Nanostructures;397
16.1;1. Introduction;397
16.2;2. Synthesis and Fabrication of 1D Nanostructures;397
16.2.1;2.1. Vapor Phase Deposition Method;398
16.2.2;2.2. Solution-based Chemical Synthesis Methods;401
16.2.3;2.3. Conjunctional Methods Involving Lithography Patterning;401
16.3;3. 1D Metal Oxide Nanostructures;402
16.3.1;3.1. Oxide Nanowires;403
16.3.2;3.2. Oxide Nanotubes;404
16.3.3;3.3. Oxide Nanobelts;410
16.3.4;3.4. Hierarchical Oxide Nanostructures;421
16.4;4. Growth Mechanisms;427
16.4.1;4.1. Catalyst-involved Vapor-Liquid-Solid Growth Process;428
16.4.2;4.2. Self-catalyzed Growth Mechanism;433
16.5;5. Summary;436
16.6;References;436
17;Bioinspired Nanomaterials;440
17.1;1. Introduction;440
17.2;2. Nanofibers ;442
17.2.1;2.1. Nanofibers Made from Phase Separation;442
17.2.2;2.2. Three-Dimensional Nanofibrous Scaffolds with Predesigned Macropores;450
17.2.3;2.3. Nanofibers Prepared from Electrospinning;454
17.3;3. Nanoparticles ;457
17.3.1;3.1. Polymer/Hydroxyapatite Nanocomposite Scaffold for Bone Tissue Engineering;457
17.3.2;3.2. Nanoparticle/Nanosphere for Controlled Delivery of Bioactive Factors;466
17.4;4. Surface Modification;468
17.4.1;4.1. Surface Modification Methods for Tissue Engineering;470
17.4.2;4.2. Surface Engineering of Nanofibrous PLLA Scaffolds with Gelatin;471
17.5;5. Summary;475
17.6;References;477
18;Cryotemperature Stages in Nanostructural Research;480
18.1;1. Introduction;480
18.2;2. Terminology used in Cryo-HRSEM of Aqueous Systems;481
18.3;3. Liquid Water, Ice, and Vitrified Water;482
18.4;4. History of Low-Temperature SEM;485
18.5;5. Instrumentation and Methods ;486
18.5.1;5.1. In-Lens Cryo-HRSEM;486
18.5.2;5.2. Near-Lens Cryo-HRSEM;489
18.5.3;5.3. Specimen Carriers Used in Low-Temperature Scanned Cryoimaging;490
18.6;References;502
19;Author Index;503
20;Subject Index;524




