Buch, Englisch, Band 728, 587 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 9183 g
Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Changsha, China, September 22-24, 2017, Proceedings, Part II
Buch, Englisch, Band 728, 587 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 9183 g
Reihe: Communications in Computer and Information Science
ISBN: 978-981-10-6387-9
Verlag: Springer Nature Singapore
The 112 revised full papers presented in these two volumes were carefully reviewed and selected from 987 submissions. The papers cover a wide range of topics related to Basic Theory and Techniques for Data Science including Mathematical Issues in Data Science, Computational Theory for Data Science, Big Data Management and Applications, Data Quality and Data Preparation, Evaluation and Measurement in Data Science, Data Visualization, Big Data Mining and Knowledge Management, Infrastructure for Data Science, Machine Learning for Data Science, Data Security and Privacy, Applications of Data Science, Case Study of Data Science, Multimedia Data Management and Analysis, Data-driven Scientific Research, Data-driven Bioinformatics, D
ata-driven Healthcare, Data-driven Management, Data-driven eGovernment, Data-driven Smart City/Planet, Data Marketing and Economics, Social Media and Recommendation Systems, Data-driven Security, Data-driven Business Model Innovation, Social and/or organizational impacts of Data Science.Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
Weitere Infos & Material
Mathematical Issues in Data Science.- Computational Theory for Data Science, Big Data Management and Applications.- Data Quality and Data Preparation.- Evaluation and Measurement in Data Science.- Data Visualization.- Big Data Mining and Knowledge Management.- Infrastructure for Data Science.- Machine Learning for Data Science.- Data Security and Privacy.- Applications of Data Science.- Case Study of Data Science.- Multimedia Data Management and Analysis.- Data-driven Scientific Research.- Data-driven Bioinformatics.- Data-driven Healthcare.- Data-driven Management.- Data-driven eGovernment.- Data-driven Smart City/Planet.- Data Marketing and Economics.- Social Media and Recommendation Systems.- Data-driven Security.- Data-driven Business Model Innovation.- Social and/or organizational impacts of Data Science.