Zvelindovsky | Nanostructured Soft Matter | E-Book | www.sack.de
E-Book

E-Book, Englisch, 628 Seiten

Reihe: NanoScience and Technology

Zvelindovsky Nanostructured Soft Matter

Experiment, Theory, Simulation and Perspectives
2007
ISBN: 978-1-4020-6330-5
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Experiment, Theory, Simulation and Perspectives

E-Book, Englisch, 628 Seiten

Reihe: NanoScience and Technology

ISBN: 978-1-4020-6330-5
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.

Zvelindovsky Nanostructured Soft Matter jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;List of Contributors;11
4;Part I Experimental Advances;13
4.1;Microemulsion Templating;15
4.1.1;1 Introduction;15
4.1.2;2 The Microemulsion Template;18
4.1.3;3 Precipitation of (Inorganic) Nanoparticles in Droplet Phases;39
4.1.4;4 (Micro)Emulsion Polymerisation;46
4.1.5;5 Templating of Crystalline Phases;51
4.1.6;References;54
4.2;Nanofabrication of Block Copolymer Bulk and Thin Films;57
4.2.1;Microdomain Structures as Templates;57
4.2.2;1 Introduction and Background;57
4.2.3;2 Bulk Block Copolymers;61
4.2.4;3 Thin Film Block Copolymer;82
4.2.5;References;106
4.3;Characterization of Surfactant Water Systems by X-Ray Scattering and NMR;111
4.3.1;1 Introduction to Surfactant Water Systems;111
4.3.2;2 Small Angle X-Ray Scattering (SAXS);113
4.3.3;3 Scattering from Surfactant Water Systems;116
4.3.4;4 2H NMR;128
4.3.5;5 2H NMR from Surfactant Water Systems;130
4.3.6;6 Outlook;138
4.3.7;References;139
4.4;Polyelectrolyte Diblock Copolymer Micelles;141
4.4.1;1 Introduction;141
4.4.2;2 Small Angle Neutron and X-Ray Scattering;143
4.4.3;3 Corona Chain Statistics;146
4.4.4;4 Polyelectrolyte Block Ionization;150
4.4.5;5 Association Morphology;151
4.4.6;6 Core Structure;152
4.4.7;7 Counterion Structure;154
4.4.8;8 Corona Structure;156
4.4.9;9 Inter-Micelle Structure;162
4.4.10;10 Visco-Elastic Behavior;167
4.4.11;11 Conclusions and Outlook;168
4.4.12;References;169
4.5;Structure and Shear-Induced Order in Blends of a Diblock Copolymer with the Corresponding Homopolymers;171
4.5.1;1 Introduction;171
4.5.2;2 Experimental;172
4.5.3;3 Results;174
4.5.4;4 Summary;181
4.5.5;References;182
4.6;Electric Field Alignment of Diblock Copolymer Thin Films;183
4.6.1;1 Introduction;183
4.6.2;2 Interfacial Interactions: Asymmetric Diblock Copolymers;184
4.6.3;3 Interfacial Interactions: Symmetric Diblock Copolymers;188
4.6.4;4 Interfacial Interactions: Asymmetric Diblock Copolymers;191
4.6.5;5 Electric Field Alignment: Symmetric Diblock Copolymers;192
4.6.6;6 Electric Field Alignment: Asymmetric Diblock Copolymers;194
4.6.7;7 Electric Field Induced Sphere-to-Cylinder Transition;199
4.6.8;8 Influence of Free Ions;201
4.6.9;9 Sequential, Orthogonal Fields;205
4.6.10;10 Summary;208
4.6.11;References;208
4.7;Structure and Dynamics of Cylinder Forming Block Copolymers in Thin Films;243
4.7.1;1 Introduction;243
4.7.2;2 Surface Structures in Thin Films of Cylinder Forming Block Copolymers;249
4.7.3;3 Characteristic Dimensions of the Microdomain Structures;261
4.7.4;4 Dynamics;265
4.7.5;5 Control of Nanostructure in Block Copolymer Thin Films: Long-Term Prospects;270
4.7.6;References;271
5;Part II Mathematical and Theoretical Approaches;279
5.1;Scaling Theory of Polyelectrolyte and Polyampholyte Micelles;312
5.1.1;1 Introduction;312
5.1.2;2 Scaling Description of Polyelectrolyte Chains;315
5.1.3;3 Polyelectrolyte Stars;316
5.1.4;4 Polyelectrolyte Micelles;320
5.1.5;5 Polyampholyte Micelles;325
5.1.6;6 Summary and Potential Applications;332
5.1.7;7 Perspectives;334
5.1.8;References;335
5.2;The Latest Development of the Weak Segregation Theory of Microphase Separation in Block Copolymers;339
5.2.1;1 Introduction;339
5.2.2;2 The WST and the Non-Conventional Phases’ Stability;352
5.2.3;3 WST Applications to Multi-Component Block Copolymer Systems;361
5.2.4;4 The WST Predicted Peculiarities in the Multi-Component Block Copolymer Systems;365
5.2.5;Appendix A. The Basic Weakly Segregated Morphologies;375
5.2.6;References;379
5.3;Coarse-Grained Modeling of Mesophase Dynamics in Block Copolymers;383
5.3.1;1 Introduction;383
5.3.2;2 Mesoscopic Modeling;384
5.3.3;3 Defected Structure and Dynamics;387
5.3.4;4 Control: Shear Alignment;393
5.3.5;5 Perspectives;403
5.3.6;References;404
5.4;Effective Interactions in Soft Materials;407
5.4.1;1 Introduction;407
5.4.2;2 Systems of Interest;408
5.4.3;3 E.ective Interaction Methods;410
5.4.4;4 Applications;425
5.4.5;5 Summary and Outlook;442
5.4.6;References;443
6;Part III Computer Simulations;447
6.1;Ab-initio Coarse-Graining of Entangled Polymer Systems;449
6.1.1;1 Introduction;449
6.1.2;2 Theory;452
6.1.3;3 Coarse-Graining in Practice;458
6.1.4;4 Twentanglement;461
6.1.5;5 Application 1: Polyethylene Melts;464
6.1.6;6 Application 2: Wormlike Micelles;467
6.1.7;7 Conclusion;470
6.1.8;References;472
6.2;Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories Applications of SUSHI in the OCTA System;473
6.2.1;1 Introduction;473
6.2.2;2 Gaussian Chain Model;475
6.2.3;3 An Overview of the SCF Theory and GRPA;478
6.2.4;4 SCF Theory;479
6.2.5;5 A DFT for General Polymer Structures Using RPA;496
6.2.6;6 Perspectives;500
6.2.7;Appendices;501
6.2.7.1;A. Subchain Scattering Function by the RPA;501
6.2.7.2;B. Scattering Functions from an Ideal Gaussian Chain;503
6.2.7.3;References;504
6.3;Monte Carlo Simulations of Nano-Confined Block Copolymers;507
6.3.1;1 Introduction;507
6.3.2;2 Lattice Models;508
6.3.3;3 Diblock Copolymer Thin Films;510
6.3.4;4 Triblock Copolymer Thin Films;527
6.3.5;5 Nano-Con.nement in Two and Three Dimensions;531
6.3.6;6 Perspectives;534
6.3.7;References;536
6.4;Understanding Vesicles and Bio-Inspired Systems with Dissipative Particle Dynamics;541
6.4.1;1 Introduction;541
6.4.2;2 Computational Membrane Models;546
6.4.3;3 Simulations of Soft Biomaterials;554
6.4.4;4 Perspectives;562
6.4.5;References;563
6.5;Theoretical Study of Nanostructured Biopolymers Using Molecular Dynamics Simulations;567
6.5.1;1 Introduction;567
6.5.2;2 Force Fields;569
6.5.3;3 Cutting the Energy Off;573
6.5.4;4 Atomic Starting Positions;574
6.5.5;5 Chiare, Fresche et Dolci Acque . . . [28];575
6.5.6;6 Fiat Vis!;575
6.5.7;7 Keeping Molecules Warm and Under Pressure;576
6.5.8;8 Starting the Simulation;577
6.5.9;9 Advanced MD Methods;577
6.5.10;10 Molecular Modeling Programs;580
6.5.11;11 Analysis of the Simulation Trajectory;581
6.5.12;12 Perspectives;593
6.5.13;References;595
6.6;Understanding Liquid/Colloids Composites with Mesoscopic Simulations;598
6.6.1;1 Introduction;598
6.6.2;2 Kinetic Approaches: Lattice Boltzmann;601
6.6.3;3 Non-Ideal Fluids: A Binary Mixture;604
6.6.4;4 Colloidal Suspensions;607
6.6.5;5 Mesoscopic Particle-Based Methods: E.ective Interactions;618
6.6.6;6 Conclusions;623
6.6.7;References;623
7;Index;627


Scaling Theory of Polyelectrolyte and Polyampholyte Micelles (S. 300-301)

Nadezhda P. Shusharina and Michael Rubinstein

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA

1 Introduction

Polymer solutions have been extensively studied for the past three decades [1–3]. Owing to the successful application of scaling theory [1] the solution properties of uncharged polymers are now reasonably well understood. However, many practically important polymers, both synthetic and natural, are charged in polar solvents, most commonly in water. The added complexity of charged systems stems from their long-range electrostatic interactions. The additional emerging length scales make the scaling approach to charged systems much more challenging than for neutral ones. At the same time, research into the functional materials, drug delivery formulations and stabilization of colloidal systems has led to the development of new types of polyelectrolytes, including charged polymeric surfactants. Study of these new polymers is of great industrial importance and provides an excellent opportunity for the introduction and validation of theoretical approaches. Therefore the theory of solutions of charged polymers remains a quickly developing area of polymer physics and material science [4–6].

In contrast to low-molecular weight compounds, polymers have a very important structural degree of freedom called molecular architecture. Speci.- cally, linear polymer chains can be linked together in di.erent fashions forming a single macromolecule. The control of molecular architecture is a widely used approach in the development of polymers with desired properties [7]. The simplest examples of the chain arrangement are block copolymers, where chemically di.erent chains are linked together end to end, and polymer stars, where several chains are linked at one point. The conformations of polymer subchains in a branched molecule depend on its architecture. For example, the interaction of monomers in a star is stronger than in a linear chain because of the additional interactions between the monomers belonging to di.erent chains (arms). If, for example, the monomers along the chain repel each other, the arms in a star will be more extended than the equivalent linear chains [8]. The structure of polyelectrolyte stars is even more complex [9]. An accumulation of a large charge in a small volume of the star leads to a non-uniform distribution of counterions in solution. The non-uniformity is due to an interplay of the electrostatic energy of the star and the entropy of the counterions.

To lower the electrostatic energy, counterions tend to be con.ned within the volume of the star. However, complete con.nement (condensation) of counterions would lead to a signi.cant loss of their entropy, so the minimum of the free energy is achieved when a fraction of counterions resides within the star, while the remaining counterions are spread throughout the surrounding solution [10,11]. The uncompensated charge of the star leads to a larger extension of the star arms as compared to neutral stars. Moreover, this extension is not uniform because of the existence of two characteristic regions in the star. In the center the concentration of monomers is so high that the short-range monomer-monomer interactions are stronger than the electrostatic long-range interactions. Hence, in the center the extension is the same as in a neutral star. In the outer region the electrostatics dominate, making the extension much larger than that in the corresponding part of a neutral star.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.