E-Book, Englisch, 618 Seiten
Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods
Airoldi / Blei / Erosheva Handbook of Mixed Membership Models and Their Applications
1. Auflage 2014
ISBN: 978-1-4665-0409-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 618 Seiten
Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods
ISBN: 978-1-4665-0409-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology.
Through examples using real data sets, you’ll discover how to characterize complex multivariate data in:
- Studies involving genetic databases
- Patterns in the progression of diseases and disabilities
- Combinations of topics covered by text documents
- Political ideology or electorate voting patterns
- Heterogeneous relationships in networks, and much more
The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.
Zielgruppe
Researchers, practitioners, and graduate students in statistics, biological sciences, and computer science.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Mixed Membership: Setting the Stage
Introduction to Mixed Membership Models and Methods Edoardo M. Airoldi, David M. Blei, Elena A. Erosheva, and Stephen E. Fienberg
A Tale of Two (Types of) Memberships Jonathan Gruhl and Elena A. Erosheva
Interpreting Mixed Membership April Galyardt
Partial Membership and Factor Analysis Zoubin Ghahramani, Shakir Mohamed, and Katherine Heller
Nonparametric Mixed Membership Models Daniel Heinz
The Grade of Membership Model and Its Extensions
A Mixed Membership Approach to Political Ideology Justin H. Gross and Daniel Manrique-Vallier
Estimating Diagnostic Error without a Gold Standard Elena A. Erosheva and Cyrille Joutard
Interpretability of Mixed Membership Models Burton H. Singer and Marcia C. Castro
Mixed Membership Trajectory Models Daniel Manrique-Vallier
Analysis of Development of Dementia through the Extended TGoM Model Fabrizio Lecci
Topic Models: Mixed Membership Models for Text
Bayesian Nonnegative Matrix Factorization with Stochastic Variational Inference John Paisley, David M. Blei, and Michael I. Jordan
Care and Feeding of Topic Models Jordan Boyd-Graber, David Mimno, and David Newman
Block-LDA: Jointly Modeling Entity-Annotated Text and Entity-Entity Links Ramnath Balasubramanyan and William W. Cohen
Robust Estimation of Topic Summaries Leveraging Word Frequency and Exclusivity Jonathan M. Bischof and Edoardo M. Airoldi
Semi-Supervised Mixed Membership Models
Mixed Membership Classification for Documents with Hierarchically Structured Labels Frank Wood and Adler Perotte
Discriminative Mixed Membership Models Hanhuai Shan and Arindam Banerjee
Mixed Membership Matrix Factorization Lester Mackey, David Weiss, and Michael I. Jordan
Discriminative Training of Mixed Membership Models Jun Zhu and Eric P. Xing
Special Methodology for Sequence and Rank Data
Population Stratification with Mixed Membership Models Suyash Shringarpure and Eric P. Xing
Mixed Membership Models for Time Series Emily B. Fox and Michael I. Jordan
Mixed Membership Models for Rank Data Isobel Claire Gormley and Thomas Brendan Murphy
Mixed Membership Models for Networks
Hierarchical Mixed Membership Stochastic Blockmodels Tracy M. Sweet, Andrew C. Thomas, and Brian W. Junker
Analyzing Time-Evolving Networks Qirong Ho and Eric P. Xing
Mixed Membership Blockmodels for Dynamic Networks with Feedback Yoon-Sik Cho, Greg Ver Steeg, and Aram Galstyan
Overlapping Clustering Methods for Networks Pierre Latouche, Etienne Birmelé, and Christophe Ambroise
Subject Index
Author Index
References appear at the end of each chapter.