E-Book, Englisch, 321 Seiten
Aliofkhazraei / Ali Two-Dimensional Nanostructures
1. Auflage 2012
ISBN: 978-1-4398-6666-5
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 321 Seiten
ISBN: 978-1-4398-6666-5
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
After the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene," even more research and development efforts have been focused on two-dimensional nanostructures. Illustrating the importance of this area in future applications, Two-Dimensional Nanostructures covers the fabrication methods and properties of these materials.
The authors begin with discussions on the properties, size effect, applications, classification groups, and growth of nanostructures. They then describe various characterization and fabrication methods, such as spectrometry, low-energy electron diffraction, physical and chemical vapor deposition, and molecular beam epitaxy. The remainder of the text focuses on mechanical, chemical, and physical properties and fabrication methods, including a new mechanical method for fabricating graphene layers and a model for relating the features and structures of nanostructured thin films.
With companies already demonstrating the capabilities of graphene in a flexible touch-screen and a 150 GHz transistor, nanostructures are on their way to replacing silicon as the materials of choice in electronics and other areas. This book aids you in understanding the current chemical, mechanical, and physical processes for producing these "miracle materials."
Zielgruppe
Researchers in materials science, nanoscience/nanotech, chemistry, and physics.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Synthesis, Processing, and Application of Nanostructures
Introduction to Nanotechnology
History of Nanotechnology
What Is a Nanomaterial?
Properties of Nanostructured Materials
Thermal Stability of Nanostructures
Nanotechnology and Future Perspectives
Some Applications of Nanostructures
Classification of Two-Dimensional Nanostructures
Introduction
Various Methods for Production of Nanostructures
Physical and Chemical Analysis of Nanoparticles
Different Forms of Growth
Relation between Growth and Energy Level
Overaturation Effect on Growth
Quantitative Description of Initial Stages of Film Growth
Kinetic Theory of Growth
Orientation of Thin Films
Film Growth with a Certain Orientation
Film–Substrate Interfaces
Characterization and Fabrication Methods of Two-Dimensional Nanostructures
Introduction
Silicon (Si)
Dimer-Adatom-Stacking Fault (DAS) Model
Auger Electron Spectrometry (AES)
Low-Energy Electron Diffraction (LEED) Technique
X-Ray Phototransmission Spectrometry
Physical Vapor Deposition (PVD) Methods
Chemical Vapor Deposition (CVD)
Molecular Beam Epitaxy (MBE)
Ion Beam-Assisted Film Deposition
Pulsed Laser Deposition (PLD)
Chemical Bath Deposition (CBD)
Mechanical Fabrication/Properties of Two-Dimensional Nanostructures
Introduction
Multiple-Layer Coatings
Fabrication Methods of Multiple-Layer Coatings
Examining the Characteristics of the Multiple-Layer Coatings
Examples of Mechanical Affected Properties of Two-Dimensional Nanostructures
Chemical/Electrochemical Fabrication/Properties of Two-Dimensional Nanostructures
Introduction
History
Direct Writing of Metal Nanostructures
Theory and Thermodynamic Method of Codeposition
Phase Transition of Two-Dimensional Nanostructure by Electrochemical Potential
Procurement of Nanomaterials through Deposition
Conclusion
Physical and Other Fabrication/Properties of Two-Dimensional Nanostructures
Introduction
Concepts of Nanostructured Thin Films
Important Physical Fabrication Methods
Specification of Sculptured Thin Films
Phase, Length, and Time Sandwich
A Model to Make a Relation between Features and Structures of Dielectric Helicoidal Sculptured Thin Films
Analysis of Precise Couple Wave for the Incident Transverse Wave
Physical Principles and Applications of Different Fabrication Methods
Index
References appear at the end of each chapter.