Appice / Ceci / Loglisci | New Frontiers in Mining Complex Patterns | E-Book | sack.de
E-Book

E-Book, Englisch, Band 7765, 231 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Appice / Ceci / Loglisci New Frontiers in Mining Complex Patterns

First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers
Erscheinungsjahr 2013
ISBN: 978-3-642-37382-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers

E-Book, Englisch, Band 7765, 231 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-642-37382-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
Appice / Ceci / Loglisci New Frontiers in Mining Complex Patterns jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social  Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.  Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social  Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.