E-Book, Englisch, Band 7765, 231 Seiten, eBook
Appice / Ceci / Loglisci New Frontiers in Mining Complex Patterns
Erscheinungsjahr 2013
ISBN: 978-3-642-37382-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers
E-Book, Englisch, Band 7765, 231 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-642-37382-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.