Artemiev / Averina | Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations | E-Book | www.sack.de
E-Book

E-Book, Englisch, 184 Seiten, Format (B × H): 155 mm x 230 mm

Artemiev / Averina Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations


Nachdruck 2010
ISBN: 978-3-11-094466-2
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 184 Seiten, Format (B × H): 155 mm x 230 mm

ISBN: 978-3-11-094466-2
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark



Artemiev / Averina Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations jetzt bestellen!

Weitere Infos & Material


I-VIII -- 1. Numerical Solution of the Cauchy Problem for Systems of Ordinary Differential Equations -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.1. Elements of Probability Theory, Stochastic Processes and Statistical Simulation -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.2. Cauchy Problem for a SDE System. Main Definitions -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.3. Construction of SDEs with Given Probability Characteristics of Solution -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.4. Linear SDE Systems with Additive and Multiplicative Noise -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.5. Mean Square Stability of SDE Solutions. Stiff in Mean Square SDE Systems. Oscillatory Stochastic Systems -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.6. Simple Numerical Methods Generalizing the Explicit Runge-Kutta Methods -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.7. Families of Numerical Methods for Solving SDE Systems. Theorem of Convergence -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.8. Mean Square Consistency of Methods -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.9. Mean Square Stability of Methods -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.10. Numerical Methods for Solving Linear SDE Systems -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.11. Variable Step Algorithms for Solving SDEs -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.12. Numerical Solution of SDE System with Poisson Component -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.13. Applying SDE for Numerical Solution of Linear Elliptic and Parabolic Equations -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.14. Statistical Simulation of the SDE Solutions in Problems of Analysis and Synthesis of Automated Control -- 2. Statistical Simulation of the Cauchy Problem Solution for Systems of Stochastic Differential Equations. 2.15. Numerical Experiments -- References



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.