E-Book, Englisch, 1008 Seiten
Bai / Jin Marine Structural Design
2. Auflage 2015
ISBN: 978-0-08-100007-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 1008 Seiten
ISBN: 978-0-08-100007-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Dr. Yong Bai holds the position of Chair Professor at Zhejiang University (China) and is also an academician at the Norwegian Academy of Technical Sciences. He is a fellow of the US Society of Naval Architects and Marine Engineers and the UK Royal Institution of Naval Architects. With an extensive background in offshore engineering structures and pipelines, Prof. Bai has held professorships at renowned universities, significantly contributing to the global offshore oil and gas industry through his publications and innovative achievements.
Autoren/Hrsg.
Weitere Infos & Material
1;Marine Structural Design;4
2;Copyright;5
3;Contents;6
4;Preface to First Edition;28
5;Preface to Second Edition;30
6;Part 1 Structural Design Principles;32
6.1;1 - Introduction;34
6.1.1;1.1 Structural Design Principles;34
6.1.1.1;1.1.1 Introduction;34
6.1.1.2;1.1.2 Limit-State Design;35
6.1.2;1.2 Strength and Fatigue Analysis;37
6.1.2.1;1.2.1 Ultimate Strength Criteria;37
6.1.2.2;1.2.2 Design for Accidental Loads;39
6.1.2.3;1.2.3 Design for Fatigue;40
6.1.3;1.3 Structural Reliability Applications;42
6.1.3.1;1.3.1 Structural Reliability Concepts;42
6.1.3.2;1.3.2 Reliability-Based Calibration of Design Factor;43
6.1.3.3;1.3.3 Requalification of Existing Structures;44
6.1.4;1.4 Risk Assessment;45
6.1.4.1;1.4.1 Application of Risk Assessment;45
6.1.4.2;1.4.2 Risk-Based Inspection;45
6.1.4.3;1.4.3 Human and Organization Factors;46
6.1.5;1.5 Layout of This Book;46
6.1.6;1.6 How to Use This Book;48
6.1.7;References;48
6.2;2 - Marine Composite Materials and Structure;50
6.2.1;2.1 Introduction;50
6.2.2;2.2 The Application of Composites in the Marine Industry;50
6.2.2.1;2.2.1 Ocean Environment;51
6.2.2.2;2.2.2 Application in the Shipbuilding Industry;53
6.2.2.2.1;Pleasure Boats Industry;53
6.2.2.2.2;Recreational Applications;54
6.2.2.2.3;Commercial Applications;54
6.2.2.2.4;Military Applications;54
6.2.2.3;2.2.3 Marine Aviation Vehicles and Off-Shore Structure;54
6.2.3;2.3 Composite Material Structure;56
6.2.3.1;2.3.1 Fiber Reinforcements;57
6.2.3.1.1;Glass Fibers;58
6.2.3.1.2;Aramid Fibers;58
6.2.3.1.3;Carbon Fibers;59
6.2.3.2;2.3.2 Resin Systems;59
6.2.4;2.4 Material Property;60
6.2.4.1;2.4.1 Orthotropic Properties;62
6.2.4.2;2.4.2 Orthotropic Properties in Plane Stress;65
6.2.5;2.5 Key Challenges for the Future of Marine Composite Materials;66
6.2.6;References;67
6.3;3 - Green Ship Concepts;70
6.3.1;3.1 General;70
6.3.2;3.2 Emissions;70
6.3.2.1;3.2.1 Regulations on Air Pollution;71
6.3.2.2;3.2.2 Regulations on GHGs;71
6.3.2.3;3.2.3 Effect of Design Variables on the EEDI;71
6.3.2.4;3.2.4 Influence of Speed on the EEDI;74
6.3.2.5;3.2.5 Influence of Hull Steel Weight on the EEDI;74
6.3.3;3.3 Ballast Water Treatment;75
6.3.4;3.4 Underwater Coatings;78
6.3.5;References;78
6.4;4 - LNG Carrier;80
6.4.1;4.1 Introduction;80
6.4.2;4.2 Development;81
6.4.3;4.3 Typical Cargo Cycle;82
6.4.3.1;4.3.1 Inert;83
6.4.3.2;4.3.2 Gas Up;83
6.4.3.3;4.3.3 Cool Down;83
6.4.3.4;4.3.4 Bulk Loading;83
6.4.3.5;4.3.5 Voyage;83
6.4.3.6;4.3.6 Discharge;84
6.4.3.7;4.3.7 Gas Free;84
6.4.4;4.4 Containment Systems;84
6.4.4.1;4.4.1 Self-Supporting Type;85
6.4.4.1.1;Moss Tanks (Spherical IMO-Type B LNG Tanks);85
6.4.4.1.2;IHI (Prismatic IMO-Type B LNG Tanks);87
6.4.4.2;4.4.2 Membrane Type;87
6.4.4.2.1;GT96;88
6.4.4.2.2;TGZ Mark III;89
6.4.4.2.3;CS1;90
6.4.5;4.5 Structural Design of the LNG Carrier;90
6.4.5.1;4.5.1 ULS (Ultimate Limit State) Design of the LNG Carrier;90
6.4.5.1.1;Design of the LNG Carrier Hull Girder;90
6.4.5.1.1.1;Design Principles;90
6.4.5.1.1.2;Design Wave;91
6.4.5.1.1.3;Global Load Conditions;92
6.4.5.1.1.3.1;Load Condition 1—Maximum Hogging;92
6.4.5.1.1.3.2;Load Condition 2—Maximum Sagging;93
6.4.5.1.1.4;Combination of Stresses;93
6.4.5.1.1.4.1;Longitudinal Stresses;94
6.4.5.1.1.4.2;Transverse Stresses;94
6.4.5.1.1.4.3;Shear Stresses;95
6.4.5.1.2;Capacity Checks;95
6.4.5.1.2.1;General Principles;95
6.4.5.1.2.2;Hull Girder Moment Capacity Checks;96
6.4.5.1.2.3;Hull Girder Shear Capacity Check;97
6.4.6;4.6 Fatigue Design of an LNG Carrier;97
6.4.6.1;4.6.1 Preliminary Design Phase;97
6.4.6.2;4.6.2 Fatigue Design Phase;98
6.4.7;References;101
6.5;5 - Wave Loads for Ship Design and Classification;104
6.5.1;5.1 Introduction;104
6.5.2;5.2 Ocean Waves and Wave Statistics;104
6.5.2.1;5.2.1 Basic Elements of Probability and Random Processes;104
6.5.2.2;5.2.2 Statistical Representation of the Sea Surface;107
6.5.2.3;5.2.3 Ocean Wave Spectra;107
6.5.2.4;5.2.4 Moments of Spectral Density Function;110
6.5.2.5;5.2.5 Statistical Determination of Wave Heights and Periods;111
6.5.3;5.3 Ship Response to a Random Sea;112
6.5.3.1;5.3.1 Introduction;112
6.5.3.2;5.3.2 Wave-Induced Forces;114
6.5.3.3;5.3.3 Structural Response;115
6.5.3.4;5.3.4 Slamming and Green Water on Deck;116
6.5.4;5.4 Ship Design for Classification;119
6.5.4.1;5.4.1 Design Value of Ship Response;119
6.5.4.2;5.4.2 Design Loads per Classification Rules;119
6.5.4.2.1;General;119
6.5.4.2.2;Load Components;120
6.5.4.2.3;Hull Girder Loads;120
6.5.4.2.4;External Pressure;121
6.5.4.2.5;Internal Tank Pressure;122
6.5.5;References;123
6.6;6 - Wind Loads for Offshore Structures;126
6.6.1;6.1 Introduction;126
6.6.2;6.2 Classification Rules for Design;126
6.6.2.1;6.2.1 Wind Data;126
6.6.2.2;6.2.2 Wind Conditions;127
6.6.2.2.1;General;127
6.6.2.2.2;Wind Profile;128
6.6.2.2.3;Turbulence;130
6.6.2.2.4;Wind Spectra;130
6.6.2.2.4.1;Hurricanes;131
6.6.2.3;6.2.3 Wind Loads;131
6.6.2.3.1;General;131
6.6.2.3.2;Wind Pressure;132
6.6.2.3.3;Wind Forces;133
6.6.2.3.3.1;Circular Cylinders;133
6.6.2.3.3.2;Rectangular Cross Sections;133
6.6.2.3.3.3;Finite Length Effects;135
6.6.2.3.3.4;Other Structures;135
6.6.2.3.4;Dynamic Wind Analysis;136
6.6.2.3.5;Model Wind Tunnel Tests;138
6.6.2.3.6;Computational Fluid Dynamics;138
6.6.3;6.3 Research of Wind Loads on Ships and Platforms;139
6.6.3.1;6.3.1 Wind Loads on Ships;139
6.6.3.2;6.3.2 Wind Loads on Platforms;144
6.6.4;References;147
6.7;7 - Loads and Dynamic Response for Offshore Structures;150
6.7.1;7.1 General;150
6.7.2;7.2 Environmental Conditions;150
6.7.2.1;7.2.1 Environmental Criteria;150
6.7.2.1.1;Wind;151
6.7.2.1.2;Waves;151
6.7.2.1.3;Current;152
6.7.2.2;7.2.2 Regular Waves;152
6.7.2.3;7.2.3 Irregular Waves;153
6.7.2.4;7.2.4 Wave Scatter Diagram;153
6.7.3;7.3 Environmental Loads and Floating Structure Dynamics;156
6.7.3.1;7.3.1 Environmental Loads;156
6.7.3.2;7.3.2 Sea Loads on Slender Structures;156
6.7.3.3;7.3.3 Sea Loads on Large-Volume Structures;157
6.7.3.4;7.3.4 Floating Structure Dynamics;158
6.7.4;7.4 Structural Response Analysis;159
6.7.4.1;7.4.1 Structural Analysis;159
6.7.4.2;7.4.2 Response Amplitude Operator;160
6.7.5;7.5 Extreme Values;164
6.7.5.1;7.5.1 General;164
6.7.5.2;7.5.2 Short-Term Extreme Approach;166
6.7.5.3;7.5.3 Long-Term Extreme Approach;170
6.7.5.4;7.5.4 Prediction of Most Probable Maximum Extreme for Non-Gaussian Process;172
6.7.5.4.1;Drag/Inertia Parameter Method;174
6.7.5.4.2;Weibull Fitting;175
6.7.5.4.3;Gumbel Fitting;175
6.7.5.4.4;Winterstein/Jensen method;177
6.7.6;7.6 Concluding Remarks;178
6.7.7;References;179
6.7.8;Appendix A: Elastic Vibrations of Beams;180
6.7.8.1;Vibration of a Spring/Mass System;180
6.7.8.2;Elastic Vibration of Beams;181
6.8;8 - Scantling of Ship's Hulls by Rules;184
6.8.1;8.1 General;184
6.8.2;8.2 Basic Concepts of Stability and Strength of Ships;185
6.8.2.1;8.2.1 Stability;185
6.8.2.2;8.2.2 Strength;186
6.8.2.3;8.2.3 Corrosion Allowance;189
6.8.3;8.3 Initial Scantling Criteria for Longitudinal Strength;189
6.8.3.1;8.3.1 Introduction;189
6.8.3.2;8.3.2 Hull Girder Strength;190
6.8.3.2.1;Longitudinal stress;191
6.8.3.2.2;Shear stress;192
6.8.4;8.4 Initial Scantling Criteria for Transverse Strength;192
6.8.4.1;8.4.1 Introduction;192
6.8.4.2;8.4.2 Transverse Strength;193
6.8.5;8.5 Initial Scantling Criteria for Local Strength;193
6.8.5.1;8.5.1 Local Bending of Beams;193
6.8.5.1.1;Stiffeners;194
6.8.5.1.2;Girders;195
6.8.5.2;8.5.2 Local Bending Strength of Plates;196
6.8.5.3;8.5.3 Structure Design of Bulkheads, Decks, and Bottom;197
6.8.5.4;8.5.4 Buckling of Platings;197
6.8.5.4.1;General;197
6.8.5.4.2;Elastic compressive buckling stress;197
6.8.5.4.3;Buckling evaluation;200
6.8.5.5;8.5.5 Buckling of Profiles;200
6.8.6;References;201
6.9;9 - Ship Hull Scantling Design by Analysis;202
6.9.1;9.1 General;202
6.9.2;9.2 Design Loads;202
6.9.3;9.3 Strength Analysis Using Finite Element Methods;204
6.9.3.1;9.3.1 Modeling;204
6.9.3.1.1;Global Analysis;204
6.9.3.1.2;Local Structural Models;204
6.9.3.1.3;Cargo Hold and Ballast Tank Model;204
6.9.3.1.4;Frame and Girder Model;205
6.9.3.1.5;Stress Concentration Area;205
6.9.3.1.6;Fatigue Model;207
6.9.3.2;9.3.2 Boundary Conditions;207
6.9.3.3;9.3.3 Types of Elements;208
6.9.3.4;9.3.4 Postprocessing;208
6.9.3.4.1;Yielding Check;209
6.9.3.4.2;Buckling Check;209
6.9.4;9.4 Fatigue Damage Evaluation;210
6.9.4.1;9.4.1 General;210
6.9.4.2;9.4.2 Fatigue Check;210
6.9.5;References;211
6.10;10 - Offshore Soil Geotechnics;212
6.10.1;10.1 Introduction;212
6.10.2;10.2 Subsea Soil Investigation;212
6.10.2.1;10.2.1 Offshore Soil Investigation Equipment Requirements;213
6.10.2.1.1;General;213
6.10.2.1.2;Seabed Corer Equipment;214
6.10.2.1.3;Piezocone Penetration Test;214
6.10.2.1.4;Drill Rig;215
6.10.2.1.5;Downhole Equipment;215
6.10.2.1.6;Laboratory Equipment;215
6.10.2.2;10.2.2 Subsea Survey Equipment Interfaces;217
6.10.2.2.1;Onboard Laboratory Test;217
6.10.2.2.2;Core Preparation;218
6.10.2.2.3;Onshore Laboratory Tests;218
6.10.2.2.4;Nearshore Geotechnical Investigations;218
6.10.3;10.3 Deepwater Foundation;219
6.10.3.1;10.3.1 Foundations for Mooring;219
6.10.3.2;10.3.2 Suction Caisson;219
6.10.3.3;10.3.3 Spudcan Footings;220
6.10.3.4;10.3.4 Pipe Piles;223
6.10.3.4.1;Axial Capacity;223
6.10.4;References;225
6.11;11 - Offshore Structural Analysis;228
6.11.1;11.1 Introduction;228
6.11.1.1;11.1.1 General;228
6.11.1.2;11.1.2 Design Codes;228
6.11.1.3;11.1.3 Government Requirements;229
6.11.1.4;11.1.4 Certification/Classification Authorities;229
6.11.1.5;11.1.5 Codes and Standards;230
6.11.1.6;11.1.6 Other Technical Documents;231
6.11.2;11.2 Project Planning;232
6.11.2.1;11.2.1 General;232
6.11.2.2;11.2.2 Design Basis;232
6.11.2.2.1;Unit Description and Main Dimensions;232
6.11.2.2.2;Rules, Regulations and Codes;233
6.11.2.2.3;Stability and Compartmentalization;233
6.11.2.2.4;Materials and Welding;233
6.11.2.2.5;Temporary Phases;233
6.11.2.2.6;Operational Design Criteria;234
6.11.2.2.7;In-service Inspection and Repair;234
6.11.2.2.8;Reassessment;234
6.11.2.3;11.2.3 Design Brief;234
6.11.2.3.1;Analysis Models;234
6.11.2.3.2;Analysis Procedures;235
6.11.2.3.3;Structural Evaluation;235
6.11.3;11.3 Use of Finite Element Analysis;235
6.11.3.1;11.3.1 Introduction;235
6.11.3.1.1;Basic Ideas behind FEM;235
6.11.3.1.2;Computation Based on FEM;236
6.11.3.1.3;Marine Applications of FEM;236
6.11.3.2;11.3.2 Stiffness Matrix for 2D Beam Elements;237
6.11.3.3;11.3.3 Stiffness Matrix for 3D Beam Elements;239
6.11.4;11.4 Design Loads and Load Application;243
6.11.4.1;Dead Loads;243
6.11.4.2;Variable Loads;243
6.11.4.3;Static Sea Pressure;243
6.11.4.4;Wave-Induced Loads;243
6.11.4.5;Wind Loads;244
6.11.5;11.5 Structural Modeling;245
6.11.5.1;11.5.1 General;245
6.11.5.2;11.5.2 Jacket Structures;245
6.11.5.2.1;Analysis Models;245
6.11.5.2.2;Modeling for Ultimate Strength Analysis;246
6.11.5.2.3;Modeling for Fatigue Analysis;247
6.11.5.2.4;Assessment of Existing Platforms;247
6.11.5.2.5;Fire, Blast, and Accidental Loading;247
6.11.5.3;11.5.3 Floating Production and Offloading Systems (FPSO);248
6.11.5.3.1;Structural Design General;248
6.11.5.3.2;Analysis Models;249
6.11.5.3.3;Modeling for Ultimate Strength Analysis;250
6.11.5.3.4;Modeling for Compartmentalization and Stability;252
6.11.5.3.5;Modeling for Fatigue Analysis;253
6.11.5.4;11.5.4 TLP, Spar, and Semisubmersible;255
6.11.6;References;258
6.12;12 - Development of Arctic Offshore Technology;260
6.12.1;12.1 Historical Background;260
6.12.2;12.2 The Research Incentive;263
6.12.3;12.3 Industrial Development in Cold Regions;264
6.12.3.1;12.3.1 Arctic Ships;264
6.12.3.2;12.3.2 Offshore Structures;265
6.12.4;12.4 The Arctic Offshore Technology Program;268
6.12.4.1;12.4.1 Three Areas of Focus;268
6.12.4.2;12.4.2 Environmental and Climatic Change;268
6.12.4.3;12.4.3 Materials for the Arctic;269
6.12.5;12.5 Highlights;270
6.12.5.1;12.5.1 Mechanical Resistance to Slip Movement in Level Ice;270
6.12.5.2;12.5.2 Ice Forces on Fixed Structures;271
6.12.5.3;12.5.3 Concrete Durability in Arctic Offshore Structures;273
6.12.6;12.6 Conclusion;273
6.12.7;References;274
6.13;13 - Limit-State Design of Offshore Structures;276
6.13.1;13.1 Limit-State Design;276
6.13.2;13.2 ULS Design;277
6.13.2.1;13.2.1 Ductility and Brittle Fracture Avoidance;277
6.13.2.2;13.2.2 Plated Structures;278
6.13.2.3;13.2.3 Shell Structures;279
6.13.3;13.3 FLS Design;284
6.13.3.1;13.3.1 Introduction;284
6.13.3.2;13.3.2 Fatigue Analysis;286
6.13.3.3;13.3.3 Fatigue Design;288
6.13.4;References;289
6.14;14 - Ship Vibrations and Noise Control;290
6.14.1;14.1 Introduction;290
6.14.2;14.2 Basic Beam Theory of Ship Vibration;291
6.14.3;14.3 Beam Theory of Steady-State Ship Vibration;292
6.14.4;14.4 Damping of Hull Vibration;293
6.14.5;14.5 Vibration and Noise Control;294
6.14.5.1;14.5.1 Propeller Radiated Signatures;294
6.14.5.2;14.5.2 Vortex Shedding Mechanisms;296
6.14.5.3;14.5.3 After-Body Slamming;298
6.14.6;14.6 Vibration Analysis;298
6.14.6.1;14.6.1 Procedure Outline of Ship Vibration Analysis;299
6.14.6.2;14.6.2 Finite Element Modeling;300
6.14.6.2.1;Lightship Weight Distribution;300
6.14.6.2.2;Loading Condition;301
6.14.6.2.3;Added Mass;301
6.14.6.2.4;Buoyancy Springs;302
6.14.6.3;14.6.3 Free Vibration;302
6.14.6.4;14.6.4 Forced Vibration;302
6.14.7;Further Reading;304
7;Part 2 Ultimate Strength;306
7.1;15 - Buckling/Collapse of Columns and Beam-Columns;308
7.1.1;15.1 Buckling Behavior and Ultimate Strength of Columns;308
7.1.1.1;15.1.1 Buckling Behavior;308
7.1.1.2;15.1.2 Perry–Robertson Formula;310
7.1.1.3;15.1.3 Johnson–Ostenfeld Formula;311
7.1.2;15.2 Buckling Behavior and Ultimate Strength of Beam-Columns;312
7.1.2.1;15.2.1 Beam-Column with Eccentric Load;312
7.1.2.2;15.2.2 Beam-Column with Initial Deflection and an Eccentric Load;313
7.1.2.3;15.2.3 Ultimate Strength of Beam-Columns;314
7.1.2.4;15.2.4 Alternative Ultimate Strength Equation—Initial Yielding;315
7.1.3;15.3 Plastic Design of Beam-Columns;316
7.1.3.1;15.3.1 Plastic Bending of Beam Cross Section;316
7.1.3.1.1;Rectangular Cross Section;316
7.1.3.1.2;Tubular Cross Section (t<
Introduction
Abstract
This chapter discusses a modern theory for design and analysis of marine structures. The term “marine structures” refers to ship and offshore structures. The objective of this book is to summarize the latest developments of design codes, engineering practices, and research in the form of a book, focusing on applications of finite element analysis and risk/reliability methods. The purpose of this book is to summarize these technological developments in order to promote advanced structural design. The emphasis on finite element methods, dynamic response, risk/reliability, and information technology differentiates this book from existing ones. This chapter also illustrates the process of a structural design based on finite element analysis and risk/reliability methods. When this book was first drafted, the author's intention was to use it in teaching his course Marine Structural Design. The material presented in this book may be used for several MS or PhD courses, such as Ship Structural Design, Design of Floating Production Systems, Ultimate Strength of Marine Structures, Fatigue and Fracture, and Risk and Reliability in Marine Structures. This book addresses the marine and offshore applications of steel structures. In addition to the topics that are normally covered by civil engineering books on design of steel structures this book also covers hydrodynamics, ship impacts, and fatigue/fracture. In a comparison with books on design of spacecraft structures, this book describes applications of finite element methods and risk/reliability methods in greater detail. Hence, it should also be of interest to engineers and researchers working on civil engineering and spacecraft structures.
Keywords
Accidental loads; Applications; Calibration; Concepts; Fatigue assessment; Limit-state design; Risk assessment
1.1. Structural Design Principles
1.1.1. Introduction
1.1.2. Limit-State Design
d=Rd
(1.1)