E-Book, Englisch, 389 Seiten
Behal / Dixon / Dawson Lyapunov-Based Control of Robotic Systems
Erscheinungsjahr 2010
ISBN: 978-1-4200-0627-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 389 Seiten
Reihe: Automation and Control Engineering
ISBN: 978-1-4200-0627-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Lyapunov-Based Control of Robotic Systems describes nonlinear control design solutions for problems that arise from robots required to interact with and manipulate their environments. Since most practical scenarios require the design of nonlinear controllers to work around uncertainty and measurement-related issues, the authors use Lyapunov’s direct method as an effective tool to design and analyze controllers for robotic systems.
After describing the evolution of real-time control design systems and the associated operating environments and hardware platforms, the book presents a host of standard control design tools for robotic systems using a common Lyapunov-based framework. It then discusses several problems in visual servoing control, including the design of homography-based visual servo control methods and the classic structure from motion problem. The book also deals with the issues of path planning and control for manipulator arms and wheeled mobile robots. With a focus on the emerging research area of human machine interaction, the final chapter illustrates the design of control schemes based on passivity such that the machine is a net energy sink.
Including much of the authors’ own research work in controls and robotics, this book facilitates an understanding of the application of Lyapunov-based control design techniques to up-and-coming problems in robotics.
Zielgruppe
Researchers in control systems, robotics, computer vision, and applied mathematics; graduate and advanced undergraduate students in engineering, computer science, and mathematics.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction
History of Robotics
Lyapunov-Based Control Philosophy
The Real-Time Computer Revolution
Robot Control
Introduction
Modeling and Control Objective
Computed Torque Control Approaches
Adaptive Control Design
Task-Space Control and Redundancy
Vision-Based Systems
Introduction
Monocular Image-Based Geometry
Visual Servo Tracking
Continuum Robots
Mobile Robot Regulation and Tracking
Structure from Motion
Path Planning and Control
Introduction
Velocity Field and Navigation Function Control for Manipulators
Velocity Field and Navigation Function Control for WMRs
Vision Navigation
Optimal Navigation and Obstacle Avoidance
Human Machine Interaction
Introduction
Exercise Machine
Steer-by-Wire
Robot Teleoperation
Rehabilitation Robot
Appendix A: Mathematical Background
Appendix B: Supplementary Lemmas and Expressions
Index
References appear at the end of each chapter.