Berg | The Fourier-Analytic Proof of Quadratic Reciprocity | E-Book | sack.de
E-Book

E-Book, Englisch, 118 Seiten, E-Book

Reihe: Wiley Series in Pure and Applied Mathematics

Berg The Fourier-Analytic Proof of Quadratic Reciprocity


1. Auflage 2011
ISBN: 978-1-118-03119-3
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 118 Seiten, E-Book

Reihe: Wiley Series in Pure and Applied Mathematics

ISBN: 978-1-118-03119-3
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



A unique synthesis of the three existing Fourier-analytictreatments of quadratic reciprocity.
The relative quadratic case was first settled by Hecke in 1923,then recast by Weil in 1964 into the language of unitary grouprepresentations. The analytic proof of the general n-th order caseis still an open problem today, going back to the end of Hecke'sfamous treatise of 1923. The Fourier-Analytic Proof of QuadraticReciprocity provides number theorists interested in analyticmethods applied to reciprocity laws with a unique opportunity toexplore the works of Hecke, Weil, and Kubota.
This work brings together for the first time in a single volume thethree existing formulations of the Fourier-analytic proof ofquadratic reciprocity. It shows how Weil's groundbreakingrepresentation-theoretic treatment is in fact equivalent to Hecke'sclassical approach, then goes a step further, presenting Kubota'salgebraic reformulation of the Hecke-Weil proof. Extensivecommutative diagrams for comparing the Weil and Kubotaarchitectures are also featured.
The author clearly demonstrates the value of the analytic approach,incorporating some of the most powerful tools of modern numbertheory, including adèles, metaplectric groups, andrepresentations. Finally, he points out that the critical commonfactor among the three proofs is Poisson summation, whosegeneralization may ultimately provide the resolution for Hecke'sopen problem.

Berg The Fourier-Analytic Proof of Quadratic Reciprocity jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Hecke's Proof of Quadratic Reciprocity.
Two Equivalent Forms of Quadratic Reciprocity.
The Stone-Von Neumann Theorem.
Weil's "Acta" Paper.
Kubota and Cohomology.
The Algebraic Agreement Between the Formalisms of Weil andKubota.
Hecke's Challenge: General Reciprocity and Fourier Analysis on theMarch.
Bibliography.
Index.


MICHAEL C. BERG, PhD, is Professor of Mathematics at Loyola Marymount University, Los Angeles, California.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.