Boogerd / Bruggeman / Hofmeyr | Systems Biology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 360 Seiten

Boogerd / Bruggeman / Hofmeyr Systems Biology

Philosophical Foundations
1. Auflage 2007
ISBN: 978-0-08-047527-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Philosophical Foundations

E-Book, Englisch, 360 Seiten

ISBN: 978-0-08-047527-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Systems biology is a vigorous and expanding discipline, in many ways a successor to genomics and perhaps unprecedented in its combination of biology with a great many other sciences, from physics to ecology, from mathematics to medicine, and from philosophy to chemistry. Studying the philosophical foundations of systems biology may resolve a longer standing issue, i.e., the extent to which Biology is entitled to its own scientific foundations rather than being dominated by existing philosophies.
* Answers the question of what distinguishes the living from the non-living
* An in-depth look to a vigorous and expanding discipline, from molecule to system
* Explores the region between individual components and the system

Boogerd / Bruggeman / Hofmeyr Systems Biology jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Systems Biology;4
3;Copyright Page;5
4;Table of Contents;6
5;List of Contributors;8
6;Contributor Biographies;10
7;Preface;18
8;SECTION I Introduction;20
8.1;Chapter 1 Towards philosophical foundations of Systems Biology: introduction;22
8.1.1;1. SYSTEMS BIOLOGY: A NEW SCIENCE IN SEARCH OF METHODOLOGIES AND PHILOSOPHICAL FOUNDATIONS;22
8.1.2;2. SYSTEMS BIOLOGY;24
8.1.2.1;2.1. History of systems biology;24
8.1.2.2;2.2. What is contemporary systems biology?;25
8.1.2.3;2.3. Approaches to systems biology;25
8.1.3;3. TOWARDS A PHILOSOPHY OF SYSTEMS BIOLOGY;26
8.1.3.1;3.1. The philosophy of molecular biology itself needs no further elaboration;26
8.1.3.2;3.2. Philosophers focus on philosophy of evolutionary biology;27
8.1.3.3;3.3. A philosophy of systems biology is lacking but needed;28
8.1.4;4. INTRODUCTION OF A NUMBER OF PHILOSOPHICAL ASPECTS OF SYSTEMS BIOLOGY;29
8.1.4.1;4.1. Two types of reductionism;29
8.1.4.2;4.2. A continuum of reductionism to antireductionism;31
8.1.4.3;4.3. Types of explanation;31
8.1.4.4;4.4. Mechanistic explanation;32
8.1.4.5;4.5. Systems biology and models;33
8.1.4.6;4.6. What is life?;34
8.1.5;5. AIM AND OVERVIEW OF THE BOOK;35
8.1.6;REFERENCES;36
9;SECTION II Research programs of Systems Biology;40
9.1;Chapter 2 The methodologies of systems biology;42
9.1.1;SUMMARY;42
9.1.2;1. THE METHODOLOGY AND PHILOSOPHICAL FOUNDATIONS OF THE VARIOUS SCIENCES;42
9.1.2.1;1.1. Physics;42
9.1.2.2;1.2. Biology;43
9.1.2.3;1.3. Biochemistry and molecular biology;46
9.1.2.4;1.4. Cell Biology: The living cell;47
9.1.3;2. LIMITATIONS TO THE SCIENTIFIC STATUS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY;52
9.1.3.1;2.1. Inaccuracy;52
9.1.3.2;2.2. Inability to deal with emergence;53
9.1.3.3;2.3. Frustrated aspiration of biochemistry and molecular biology to . . . biology;54
9.1.3.4;2.4. Irreducibility;55
9.1.3.5;2.5. Lack of testability because of undefinedness;56
9.1.3.6;2.6. Lack of experimental accessibility;57
9.1.3.7;2.7. Lack of analysability;57
9.1.4;3. RISING ABOVE THE LIMITATIONS;58
9.1.4.1;3.1. Genomics;58
9.1.4.2;3.2. Soon everything will be known . . . : Will biology become physics, at last?;61
9.1.4.3;3.3. Observing or understanding?;61
9.1.4.4;3.4. Systems biology;65
9.1.5;4. TOWARDS A SYSTEMATIC METHODOLOGY OF SYSTEMS BIOLOGY;66
9.1.5.1;4.1. The goals of systems biology;67
9.1.5.2;4.2. Systems biology: What it is;68
9.1.5.3;4.3. The spiral of knowledge;69
9.1.5.4;4.4. The special role of mathematics in systems biology: Calculating emergence;79
9.1.6;ACKNOWLEDGEMENTS;83
9.1.7;REFERENCES;84
9.2;Chapter 3 Methodology is Philosophy;90
9.2.1;SUMMARY;90
9.2.2;1. INTRODUCTION;91
9.2.3;2. FROM MOLECULES TO DIABETES VIA METABOLISM AND SYSTEMIC PHYSIOLOGY;100
9.2.4;3. MRS AND MCA FORM A SUCCESSFUL METHODOLOGY FOR SYSTEMS BIOLOGY;102
9.2.5;4. CONCLUSION;104
9.2.6;REFERENCES;105
9.3;Chapter 4 How can we understand metabolism?;106
9.3.1;SUMMARY;106
9.3.2;1. INTRODUCTION;107
9.3.3;2. TRADITIONAL PRINCIPLES OF METABOLISM;107
9.3.4;3. THE RISE OF SYSTEMS ANALYSIS OF METABOLISM;109
9.3.5;4. SHOULD WE EXPECT METABOLISM TO BE UNDERSTANDABLE?;114
9.3.6;5. IS SIMULATING CELL METABOLISM THE SAME AS UNDERSTANDING IT?;116
9.3.7;REFERENCES;118
9.4;Chapter 5 On building reliable pictures with unreliable data: An evolutionary and developmental coda for the new systems biology?;122
9.4.1;SUMMARY;122
9.4.2;1. INTRODUCTION;123
9.4.3;2. THE NEW SYSTEMS BIOLOGY AND EVO-DEVO;124
9.4.4;3. THE PROBLEM OF DATA RELIABILITY IN THE ANALYSIS OF LARGE SYSTEMS;125
9.4.5;4. DATA ERRORS AND MOLAR SYSTEM PROPERTIES;127
9.4.6;5. ROBUSTNESS AND THE MANAGEMENT OF UNCERTAINTY;130
9.4.7;6. GENERATIVE ENTRENCHMENT;133
9.4.8;REFERENCES;137
10;SECTION III Theory and models;140
10.1;Chapter 6 Mechanism and mechanical explanation in systems biology;142
10.1.1;SUMMARY;142
10.1.2;1. INTRODUCTION: MECHANISTIC EXPLANATION AND REDUCTION;143
10.1.3;2. LEVELS OF ORGANIZATION AND DEGREES OF RESOLUTION;148
10.1.4;3. THE DEVELOPMENT OF THE LAC OPERON AS A MECHANISTIC MODEL;153
10.1.5;4. MECHANISM AND EMERGENCE;158
10.1.6;5. CONCLUSION: MECHANISTIC EXPLANATION AND SYSTEMS BIOLOGY;161
10.1.7;REFERENCES;161
10.2;Chapter 7 Theories, models, and equations in systems biology;164
10.2.1;SUMMARY;164
10.2.2;1. INTRODUCTION: THE STRUCTURE OF BIOLOGICAL THEORIES;165
10.2.3;2. THE DEVELOPMENT OF THE HODGKIN–HUXLEY GIANT SQUID MODEL FOR ACTION POTENTIALS AS A CLASSICAL EXAMPLE OF SYSTEMS BIOLOGY;167
10.2.4;3. IMPLICATIONS OF THE HODGKIN–HUXLEY MODEL AND THEIR METHODOLOGY;172
10.2.4.1;3.1. One basic mechanism with many types of molecular realizations?;172
10.2.4.2;3.2. Genetic and epigenetic diversity accounts for ion channel diversity;173
10.2.4.3;3.3. The H and H ‘basic mechanism’ as an emergent simplification;174
10.2.5;4. A NEUROSCIENTIFIC ACCOUNT OF BEHAVIOR IN C. ELEGANS;175
10.2.6;5. IMPLICATIONS OF THE FERRÉE AND LOCKERY MODEL FOR C. ELEGANS CHEMOTAXIS;178
10.2.7;6. EIGHT IMPLICATIONS OF THE TWO EXEMPLARS FOR SYSTEMS BIOLOGY;179
10.2.8;REFERENCES;180
10.3;Chapter 8 All models are wrong . . . some more than others;182
10.3.1;SUMMARY;182
10.3.2;1. INTRODUCTION;183
10.3.3;2. MODELLING THE MODELLING PROCESS;185
10.3.4;3. ANALYTICAL MODELLING;186
10.3.5;4. SYNTHETIC MODELLING;191
10.3.6;5. SYNTHETIC VS. ANALYTIC MODELLING;193
10.3.7;6. DYNAMIC PATHWAY MODELLING;194
10.3.8;7. ALL MODELS ARE WRONG, SOME ARE USEFUL;196
10.3.9;ACKNOWLEDGEMENTS;198
10.3.10;REFERENCES;198
10.4;Chapter 9 Data without models merging with models without data;200
10.4.1;SUMMARY;200
10.4.2;1. INTRODUCTION;201
10.4.3;2. PRELIMINARY TOPOGRAPHY OF THE FIELD;203
10.4.4;3. THE FIRST ROOT OF SYSTEMS BIOLOGY: MODELS OF METABOLIC AND SIGNALING PATHWAYS;205
10.4.4.1;3.1. Regulatory metabolic and signaling systems;205
10.4.4.2;3.2. Modeling regulatory networks and gathering data;206
10.4.5;4. THE SECOND ROOT OF SYSTEMS BIOLOGY: BIOLOGICAL CYBERNETICS AND MATHEMATICAL SYSTEMS ANALYSIS;207
10.4.5.1;4.1. Cybernetic models in biology;208
10.4.5.2;4.2. Contents of the black boxes and the ‘direction’ of cybernetic modeling;209
10.4.6;5. THE THIRD ROOT OF SYSTEMS BIOLOGY: ‘OMICS’;210
10.4.6.1;5.1. Early genome projects: Chromosome maps;211
10.4.6.2;5.2. Molecular genome projects;211
10.4.6.3;5.3. Early proteomic projects;212
10.4.7;6. THE BRANCHES OF SYSTEMS BIOLOGY: MERGERS OF THE DIFFERENT ROOTS;213
10.4.7.1;6.1. The first branch of systems biology: Detailed bottom-up regulatory models;213
10.4.7.2;6.2. The second branch of systems biology: Making sense of ‘omic’ data by top-down modeling;215
10.4.8;7. THE STRUCTURE OF THE FIELD;216
10.4.9;8. EPISTEMOLOGICAL AND ONTOLOGICAL ISSUES REGARDING TOP-DOWN SYSTEMS BIOLOGY;219
10.4.9.1;8.1. Decomposition of large networks and functionality;220
10.4.9.2;8.2. The ‘holism’ of systems biology;223
10.4.9.3;8.3. ‘Realistic’ representation and systems biological ‘models of everything’;225
10.4.10;9. CONCLUSION;227
10.4.11;REFERENCES;228
11;SECTION IV Organization in biological systems;234
11.1;Chapter 10 The biochemical factory that autonomously fabricates itself: A systems biological view of the living cell;236
11.1.1;SUMMARY;236
11.1.2;1. HOW TO BE A SYSTEMS BIOLOGIST;237
11.1.3;2. THE SELF-FABRICATING CELL: A CONTEXT FOR SYSTEMS BIOLOGY;241
11.1.4;3. AUTONOMY OF MATERIAL SYSTEMS: THE NEED FOR SPECIFIC CATALYSIS;245
11.1.5;4. FABRICATION AND THE LOGIC OF LIFE;247
11.1.6;5. HOW TO CONSTRUCT A SELF-FABRICATING FACTORY;250
11.1.7;6. SELF-FABRICATION IN LIVING SYSTEMS;256
11.1.8;7. CONCLUSION;259
11.1.9;ACKNOWLEDGEMENTS;259
11.1.10;REFERENCES;260
11.2;Chapter 11 A systemic approach to the origin of biological organization;262
11.2.1;SUMMARY;262
11.2.2;1. INTRODUCTION;263
11.2.3;2. THE ORGANIZATIONAL PERSPECTIVE;265
11.2.4;3. THE STARTING POINT: NONTRIVIAL SELF-MAINTENANCE;266
11.2.4.1;3.1. From self-organization to NTSM;268
11.2.4.2;3.2. The problem of the origin of NTSMSs;271
11.2.5;4. NTSM ORGANIZATION AND AUTONOMY;272
11.2.6;5. THE EMERGENCE OF A HISTORICAL–COLLECTIVE DIMENSION;276
11.2.6.1;5.1. Autonomous systems with memory;276
11.2.6.2;5.2. The origin of an informational organization;279
11.2.7;6. THE OPEN STRUCTURE OF DARWINIAN EVOLUTION;282
11.2.8;7. CONCLUDING REMARKS;284
11.2.9;ACKNOWLEDGMENTS;285
11.2.10;REFERENCES;286
11.3;Chapter 12 Biological mechanisms: organized to maintain autonomy;288
11.3.1;SUMMARY;288
11.3.2;1. INTRODUCTION;289
11.3.3;2. THE BASIC CONCEPTION OF MECHANISM;294
11.3.4;3. THE VITALIST CHALLENGE;296
11.3.5;4. FIRST STEPS: BERNARD, CANNON, AND CYBERNETICS;298
11.3.6;5. CYCLIC ORGANIZATION AND GÁNTI’S CHEMOTON;300
11.3.7;6. FROM GÁNTI’S CHEMOTON TO AUTONOMOUS SYSTEMS;310
11.3.8;7. CONCLUDING THOUGHTS: BEYOND BASIC AUTONOMY;315
11.3.9;REFERENCES;318
11.4;Chapter 13 The disappearance of function from ‘self-organizing systems’;322
11.4.1;SUMMARY;322
11.4.2;REFERENCES;335
12;SECTION V Conclusion;338
12.1;Chapter 14 Afterthoughts as foundations for systems biology;340
12.1.1;1. SYSTEMS BIOLOGY IS FUNCTIONAL AND MECHANISTIC RATHER THAN EVOLUTIONARY BIOLOGY;344
12.1.2;2. SYSTEMS BIOLOGICAL EXPLANATIONS ARE OFTEN MECHANISTIC EXPLANATIONS;345
12.1.3;3. OTHER TYPES OF EXPLANATION ARE ALSO IMPORTANT FOR SYSTEMS BIOLOGY;346
12.1.4;4. DESCRIPTION OF MOLECULAR MECHANISMS USING MODELS;347
12.1.5;5. MODELS AND THE NONEQUILIBRIUM ORGANIZATION OF LIVING SYSTEMS;348
12.1.6;6. EMERGENT PROPERTIES;348
12.1.7;7. THEORIES AND LAWS IN SYSTEMS BIOLOGY;350
12.1.8;8. EXPLANATORY PLURALISM: INTRALEVEL AND INTERLEVEL THEORIES;352
12.1.9;9. WHAT IS LIFE?;352
12.1.10;10. CONCLUDING REMARKS;353
12.1.11;REFERENCES;354
12.2;Subject Index;356



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.