Bormashenko Wetting of Real Surfaces
1. Auflage 2013
ISBN: 978-3-11-025879-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 187 Seiten
Reihe: ISSN
ISBN: 978-3-11-025879-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential.
Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data.
Zielgruppe
Theoretical Physicists, Materials Scientists, Theoretical Chemists
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Oberflächenbeschichtung
- Naturwissenschaften Chemie Physikalische Chemie Quantenchemie, Theoretische Chemie
- Naturwissenschaften Physik Thermodynamik Oberflächen- und Grenzflächenphysik, Dünne Schichten
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Chemische Verfahrenstechnik
Weitere Infos & Material
Frontmatter
Preface
Contents
Chapter 1: Basics of elementary particles
Chapter 2: Lagrange formalism. Symmetries and gauge fields
Chapter 3: Canonical quantization, symmetries in quantum field theory
Chapter 4: The Feynman theory of positron and elementary quantum electrodynamics
Chapter 5: Scattering matrix
Chapter 6: Invariant perturbation theory
Chapter 7: Exact propagators and vertices
Chapter 8: Some applications of quantum electrodynamics
Chapter 9: Path integrals and quantum mechanics
Chapter 10: Functional integrals: scalars and spinors
Chapter 11: Functional integrals: gauge fields
Chapter 12: The Weinberg–Salam model
Chapter 13: Renormalization
Chapter 14: Nonperturbative approaches
Bibliography
Index