Borrmann / König / Koch | Building Information Modeling | E-Book | sack.de
E-Book

E-Book, Englisch, 582 Seiten, eBook

Borrmann / König / Koch Building Information Modeling

Technology Foundations and Industry Practice

E-Book, Englisch, 582 Seiten, eBook

ISBN: 978-3-319-92862-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



Building Information Modeling (BIM) refers to the consistent and continuous use of digital information throughout the entire lifecycle of a built facility, including its design, construction and operation. In order to exploit BIM methods to their full potential, a fundamental grasp of their key principles and applications is essential. Accordingly, this book combines discussions of theoretical foundations with reports from the industry on currently applied best practices.
The book's content is divided into six parts: Part I discusses the technological basics of BIM and addresses computational methods for the geometric and semantic modeling of buildings, as well as methods for process modeling. Next, Part II covers the important aspect of the interoperability of BIM software products and describes in detail the standardized data format Industry Foundation Classes. It presents the different classification systems, discusses the data format CityGML for describing 3D city models and COBie for handing over data to clients, and also provides an overview of BIM programming tools and interfaces. Part III is dedicated to the philosophy, organization and technical implementation of BIM-based collaboration, and discusses the impact on legal issues including construction contracts. In turn, Part IV covers a wide range of BIM use cases in the different lifecycle phases of a built facility, including the use of BIM for design coordination, structural analysis, energy analysis, code compliance checking, quantity take-off, prefabrication, progress monitoring and operation. In Part V, a number of design and construction companies report on the current state of BIM adoption in connection with actual BIM projects, and discuss the approach pursued for the shift toward BIM, including the hurdles taken. Lastly, Part VI summarizes the book's content and provides an outlook on future developments.
The book was written both for professionals using or programming such tools, and for students in Architecture and Construction Engineering programs.

André Borrmann is Full Professor for Computational Modeling and Simulation, and Chairman of the Center of Digital Methods for the Built Environment at Technische Universität München. His research focuses on the technological aspects of Building Information Modeling. Professor Borrmann is currently chairing the German Association of Computing in Civil Engineering (GACCE). He is advising the German government concerning its BIM roadmap and is actively supporting the construction industry's shift towards the adoption of advanced digital technology. Related to this, he is pushing forward the international standardization activities of buildingSMART.
Markus König is Full Professor for Computing in Engineering at Ruhr-Universität Bochum. His research interests include building information modeling, lean construction, simulation-based scheduling, knowledge management, internet of things as well as virtual and augmented reality. He supported the development of the 'Road Map for Digital Design and Construction' for the German government and is now co-responsible for its implementation by 2020. Professor König established the first BIM Professional certification program in Germany and initiated various practical BIM networks in Germany.
Christian Koch is Full Professor and Chair of Intelligent Technical Design, and Course Director of the M.Sc. Program Digital Engineering at the Bauhaus-Universität Weimar. His research and teaching interests are in the foundations and applications of modern information and communication technology (ICT) during the design, the construction and the operation of civil infrastructure using methods of Building Information Modeling (BIM), Computer Vision and Machine Learning as well as Virtual and Augmented Reality.
Jakob Beetz works as a full professor for Computational Design at the Department of Architecture of the RWTH Aachen University, Germany. He has been active in numerous international research, development and standardization efforts in the fields of Building Information Modeling, Computer Supported Collaborative Work, Interoperability, Linked Data and Semantic Web. He is a co-founder of the Open Source model server platform bimserver.org and worked on the development of the Linked Data representation of the Industry Foundation Classes ifcOWL and its standardization.
Borrmann / König / Koch Building Information Modeling jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1;Preface;5
2;Contents;8
3;Acronyms;21
4;1 Building Information Modeling: Why? What? How?;24
4.1;1.1 Building Information Modeling: Why?;25
4.2;1.2 Building Information Modeling: What?;27
4.2.1;1.2.1 BIM in the Design Development Phase;29
4.2.2;1.2.2 BIM in the Construction Phase;32
4.2.3;1.2.3 BIM in the Operation Phase;33
4.2.4;1.2.4 Level of Development;33
4.3;1.3 Building Information Modeling: How?;34
4.3.1;1.3.1 Little BIM vs. BIG BIM, Closed BIM vs. Open BIM;34
4.3.2;1.3.2 BIM Maturity Levels;36
4.3.3;1.3.3 BIM Project Execution;38
4.3.4;1.3.4 BIM Roles and Professions;39
4.4;1.4 State of BIM Adoption;40
4.5;1.5 Summary;43
4.6;References;44
5;Part I Technological Foundations;48
5.1;2 Principles of Geometric Modeling;49
5.1.1;2.1 Geometric Modeling in the Context of BIM;49
5.1.2;2.2 Solid Modeling;51
5.1.2.1;2.2.1 Explicit Modeling;51
5.1.2.1.1;2.2.1.1 Boundary Representation Methods;51
5.1.2.1.2;2.2.1.2 Triangulated Surface Modeling;53
5.1.2.2;2.2.2 Implicit Modeling;54
5.1.2.2.1;2.2.2.1 Constructive Solid Geometry;54
5.1.2.2.2;2.2.2.2 Extrusion and Rotation Methods;55
5.1.2.3;2.2.3 A Comparison of Explicit and Implicit Methods;56
5.1.3;2.3 Parametric Modeling;57
5.1.4;2.4 Freeform Curves and Surfaces;59
5.1.4.1;2.4.1 Freeform Curves;59
5.1.4.2;2.4.2 Freeform Surfaces;61
5.1.5;2.5 Further Reading;62
5.1.6;2.6 Summary;62
5.1.7;References;63
5.2;3 Data Modeling;64
5.2.1;3.1 Introduction;64
5.2.2;3.2 Workflow of Data Modeling;65
5.2.3;3.3 Data Modeling Notations and Languages;66
5.2.3.1;3.3.1 Entity Relationship Diagrams (ERD);66
5.2.3.2;3.3.2 Unified Modeling Language (UML);67
5.2.3.3;3.3.3 Extensible Markup Language (XML);68
5.2.4;3.4 Data Modeling Concepts;69
5.2.4.1;3.4.1 Entities and Entity Types;69
5.2.4.2;3.4.2 Attributes;70
5.2.4.2.1;3.4.2.1 Relationship Modeling;71
5.2.4.2.2;3.4.2.2 Object-Oriented Modeling;72
5.2.4.2.3;3.4.2.3 XML Data Modeling;73
5.2.4.3;3.4.3 Relations and Associations;74
5.2.4.3.1;3.4.3.1 Entity Relationship Modeling;74
5.2.4.3.2;3.4.3.2 Object-Oriented Modeling;75
5.2.4.3.3;3.4.3.3 XML Data Modeling;77
5.2.4.4;3.4.4 Aggregations and Compositions;77
5.2.4.5;3.4.5 Specialization and Generalization (Inheritance);79
5.2.4.5.1;3.4.5.1 Object-Oriented Modeling;79
5.2.4.5.2;3.4.5.2 XML Data Modeling;80
5.2.5;3.5 Challenges of Data Modeling in AEC/FM;81
5.2.6;3.6 Summary;82
5.2.7;References;83
5.3;4 Process Modeling;84
5.3.1;4.1 Introduction;84
5.3.2;4.2 Workflow Management;86
5.3.3;4.3 Process Modeling;88
5.3.3.1;4.3.1 Integration Definition for Function Modeling;89
5.3.3.2;4.3.2 Business Process Modeling and Notation;90
5.3.3.2.1;4.3.2.1 Flow Objects;90
5.3.3.2.2;4.3.2.2 Pools and Swim Lanes;92
5.3.3.2.3;4.3.2.3 Connecting Objects;93
5.3.3.2.4;4.3.2.4 Artifacts;93
5.3.4;4.4 Workflow Management Systems;95
5.3.5;4.5 Execution Processes;96
5.3.6;4.6 Summary;98
5.3.7;References;98
6;Part II Interoperability in AEC;100
6.1;5 Industry Foundation Classes: A Standardized Data Model for the Vendor-Neutral Exchange of Digital Building Models;101
6.1.1;5.1 Background;101
6.1.2;5.2 History of the IFC Data Model;104
6.1.3;5.3 EXPRESS: A Data Modeling Language for the IFC Standard;106
6.1.4;5.4 Organization in Layers;108
6.1.4.1;5.4.1 Core Layer;108
6.1.4.2;5.4.2 Interoperability Layer;110
6.1.4.3;5.4.3 Domain Layer;110
6.1.4.4;5.4.4 Resource Layer;110
6.1.5;5.5 Inheritance Hierarchy;111
6.1.5.1;5.5.1 IfcRoot and Its Direct Subclasses;112
6.1.5.2;5.5.2 IfcObject and Its Direct Subclasses;112
6.1.5.3;5.5.3 IfcProduct and Its Direct Subclasses;113
6.1.6;5.6 Object Relationships;113
6.1.6.1;5.6.1 General Concept;113
6.1.6.2;5.6.2 Spatial Aggregation Hierarchy;115
6.1.6.3;5.6.3 Relationships Between Spaces and Their Bounding Elements;116
6.1.6.4;5.6.4 Specifying Materials;118
6.1.7;5.7 Geometric Representations;121
6.1.7.1;5.7.1 Division Between Semantic Description and Geometric Representation;121
6.1.7.2;5.7.2 Forms of Geometric Description;121
6.1.7.2.1;5.7.2.1 Points, Vectors, Directions;122
6.1.7.2.2;5.7.2.2 Curves in 2D and 3D;122
6.1.7.2.3;5.7.2.3 Bounding Box;122
6.1.7.2.4;5.7.2.4 Surface Model;122
6.1.7.2.5;5.7.2.5 Triangulated Surface Descriptions/Tessellation;123
6.1.7.2.6;5.7.2.6 Solid Modeling;124
6.1.7.2.7;5.7.2.7 Boundary Representation;125
6.1.7.2.8;5.7.2.8 Constructive Solid Geometry;127
6.1.7.2.9;5.7.2.9 Clipping;128
6.1.7.2.10;5.7.2.10 Rotation, Extrusion and Swept Solids;128
6.1.7.3;5.7.3 Relative Positioning;130
6.1.8;5.8 Extension Mechanisms: Property Sets and Proxies;132
6.1.9;5.9 Typification of Building Elements;134
6.1.10;5.10 Example: HelloWall.ifc;136
6.1.11;5.11 ifcXML;142
6.1.12;5.12 Summary;143
6.1.13;References;145
6.2;6 Process-Based Definition of Model Content;147
6.2.1;6.1 Overview;147
6.2.2;6.2 Information Delivery Manuals and Model View Definitions;148
6.2.2.1;6.2.1 Process Maps;151
6.2.2.2;6.2.2 Exchange Requirements;152
6.2.2.3;6.2.3 Model View Definitions;152
6.2.2.4;6.2.4 Level of Development;156
6.2.3;6.3 Summary;157
6.2.4;References;158
6.3;7 IFC Certification of BIM Software;159
6.3.1;7.1 The Aims of buildingSMART Software Certification;159
6.3.2;7.2 Expectations of Software Certification;160
6.3.3;7.3 The Principles of IFC Software Certification;163
6.3.3.1;7.3.1 IDM and MVD;163
6.3.3.2;7.3.2 Test Descriptions and Calibration Files;164
6.3.3.3;7.3.3 GTDS Web Platform;165
6.3.4;7.4 The Process of Software Certification;167
6.3.4.1;7.4.1 Export Certification;167
6.3.4.2;7.4.2 Import Certification;168
6.3.5;7.5 Further Aspects of Software Certification;168
6.3.5.1;7.5.1 Costs;168
6.3.5.2;7.5.2 Transparency and Reproducibility;168
6.3.5.3;7.5.3 The Role of mvdXML;169
6.3.5.4;7.5.4 The Importance of Software Certification for BIM;169
6.3.6;7.6 Outlook;169
6.3.7;7.7 Summary;172
6.3.8;References;173
6.4;8 Structured Vocabularies in Construction: Classifications, Taxonomies and Ontologies;174
6.4.1;8.1 Introduction;174
6.4.2;8.2 Applications of Structured Vocabularies;175
6.4.3;8.3 Foundations of Structured Vocabularies;177
6.4.3.1;8.3.1 Shared Dictionaries;177
6.4.3.2;8.3.2 Classification Systems;178
6.4.3.3;8.3.3 Ontologies;179
6.4.4;8.4 Technical Implementations of Structured Vocabularies;179
6.4.4.1;8.4.1 Classification Tables;179
6.4.4.2;8.4.2 ISO 12006 and bSDD;180
6.4.4.3;8.4.3 Semantic Web and Linked Data;180
6.4.5;8.5 Summary;183
6.4.6;References;184
6.5;9 COBie: A Specification for the Construction Operations Building Information Exchange;185
6.5.1;9.1 Introduction;185
6.5.2;9.2 Information Exchange Projects in the NBIMS;187
6.5.3;9.3 Workflows and Technologies Behind COBie;187
6.5.3.1;9.3.1 Identify Requirements;187
6.5.3.2;9.3.2 COBie File Formats;189
6.5.3.3;9.3.3 Workflow of Data Transfer;190
6.5.3.4;9.3.4 Content of a COBie Spreadsheet File;192
6.5.3.5;9.3.5 File Format COBieLite;194
6.5.3.6;9.3.6 Structure and Content of a COBieLite File;195
6.5.4;9.4 Implementation Status;196
6.5.5;9.5 Summary;197
6.5.6;References;198
6.6;10 Linked Data;199
6.6.1;10.1 Introduction;199
6.6.2;10.2 Concepts of Linked Data and the Semantic Web;200
6.6.3;10.3 Technology: The Semantic Web Stack;202
6.6.4;10.4 Linked Data in AEC/FM;204
6.6.5;10.5 Multiple Interlinked Models;206
6.6.6;10.6 Dynamic, Semantic Model Extensions;209
6.6.7;10.7 Querying and Reasoning;212
6.6.8;10.8 Summary;213
6.6.9;References;214
6.7;11 Modeling Cities and Landscapes in 3D with CityGML;216
6.7.1;11.1 Introduction;216
6.7.2;11.2 What Is CityGML? A Short Introduction;218
6.7.2.1;11.2.1 Implementation;218
6.7.2.2;11.2.2 Geometry;219
6.7.3;11.3 LoD in CityGML;219
6.7.4;11.4 Validation of CityGML Datasets;221
6.7.5;11.5 Viewing CityGML Data Over the Web;223
6.7.6;11.6 Applications of 3D City Models;225
6.7.7;11.7 BIM and 3D GIS Integrations: IFC and CityGML;226
6.7.8;11.8 BIM and 3D GIS: BIM gbXML and CityGML;228
6.7.9;11.9 Summary;229
6.7.10;References;230
6.8;12 BIM Programming;233
6.8.1;12.1 Introduction;233
6.8.2;12.2 Procedures for Accessing Data in the STEP Format;234
6.8.2.1;12.2.1 Early Binding;234
6.8.2.2;12.2.2 Late Binding;236
6.8.3;12.3 Accessing XML Encoded IFC Data;238
6.8.4;12.4 Interpretation of IFC Geometry Information;239
6.8.5;12.5 Add-In Development for Commercial BIM Applications;242
6.8.6;12.6 Cloud-Based Platforms;243
6.8.7;12.7 Visual Programming;244
6.8.8;12.8 Summary;246
6.8.9;References;247
7;Part III BIM-Based Collaboration;248
7.1;13 BIM Project Management;249
7.1.1;13.1 Introduction;249
7.1.2;13.2 Participants and Perspectives;251
7.1.3;13.3 Information Requirements and Models;252
7.1.3.1;13.3.1 Organizational Information Requirements;253
7.1.3.2;13.3.2 Project Information Requirements/Model;253
7.1.3.3;13.3.3 Asset Information Requirements/Model;254
7.1.3.4;13.3.4 Exchange Information Requirements;254
7.1.3.5;13.3.5 Information Requirements Over the Asset LifeCycle;254
7.1.3.6;13.3.6 BIM Execution Plan;255
7.1.3.7;13.3.7 Task Information Delivery Plan;256
7.1.3.8;13.3.8 Master Information Delivery Plan;257
7.1.4;13.4 Collaborative Production of Information;257
7.1.4.1;13.4.1 Information Management in the Project DeliveryPhase;257
7.1.4.2;13.4.2 Roles During the Production of Information;260
7.1.5;13.5 Container-Based Collaboration;262
7.1.6;13.6 Summary;263
7.1.7;References;263
7.2;14 Collaborative Data Management;264
7.2.1;14.1 Introduction;265
7.2.2;14.2 BIM Information Resources;266
7.2.2.1;14.2.1 Metadata;266
7.2.2.2;14.2.2 Level of Aggregation;267
7.2.2.3;14.2.3 Digital Building Models;267
7.2.2.4;14.2.4 Information in Model Coordination and Model Management;270
7.2.3;14.3 The Requirements of Cooperative Data Management;272
7.2.4;14.4 Communication and Cooperation;273
7.2.4.1;14.4.1 Concurrency Control;275
7.2.4.2;14.4.2 Roles and Rights;277
7.2.4.3;14.4.3 Versioning;278
7.2.4.4;14.4.4 Approval and Archiving;280
7.2.5;14.5 Software Systems for Collaborative Work Using BIM Data;281
7.2.5.1;14.5.1 Common File Repository;281
7.2.5.2;14.5.2 Document Management Systems;282
7.2.5.3;14.5.3 Internet-Based Project Platforms;283
7.2.5.4;14.5.4 Product Data Management Systems;284
7.2.5.5;14.5.5 Proprietary BIM Servers;285
7.2.5.6;14.5.6 Product Model Servers;286
7.2.6;14.6 Summary;288
7.2.7;References;289
7.3;15 Common Data Environment;291
7.3.1;15.1 Introduction;292
7.3.2;15.2 Basic Technical Aspects;293
7.3.2.1;15.2.1 Data Repository;294
7.3.2.2;15.2.2 Data Structuring;295
7.3.2.3;15.2.3 Access Rights Administration;298
7.3.2.4;15.2.4 Workflows and Information Delivery;298
7.3.2.5;15.2.5 Version and Documentation Management;299
7.3.2.6;15.2.6 Status Management;299
7.3.2.7;15.2.7 Filtering;300
7.3.2.8;15.2.8 Project Communication;301
7.3.2.9;15.2.9 Quality Checks and Maintaining Model Quality;301
7.3.3;15.3 Summary;303
7.3.4;References;303
7.4;16 BIM Manager;304
7.4.1;16.1 BIM Manager: A New Role;304
7.4.2;16.2 The BIM Manager as a Key to Success;306
7.4.3;16.3 Tasks of a BIM Manager;307
7.4.4;16.4 Competences of a BIM Manager;309
7.4.5;16.5 Distinction Between BIM Manager and Other BIM Functions;309
7.4.6;16.6 The BIM Manager's Place in the Project Organization;310
7.4.7;16.7 Summary;312
7.4.8;References;313
7.5;17 Integrating BIM in Construction Contracts;314
7.5.1;17.1 Introduction;314
7.5.2;17.2 Contract Systems;315
7.5.3;17.3 Work Organisation and Process Details;317
7.5.4;17.4 Rights to Data;319
7.5.5;17.5 Liability;320
7.5.6;17.6 BIM Management;322
7.5.7;17.7 Summary;323
7.5.8;References;324
8;Part IV BIM Use Cases;326
8.1;18 BIM-Based Design Coordination;327
8.1.1;18.1 Model Support in Coordination;327
8.1.2;18.2 Clash Detection;328
8.1.3;18.3 4D Construction Process Animation;332
8.1.4;18.4 Model Checking;336
8.1.5;18.5 Summary;337
8.2;19 BIM for Structural Engineering;338
8.2.1;19.1 Introduction;338
8.2.2;19.2 Geometric and Analytical Model;338
8.2.3;19.3 Structural Engineering Workflow;339
8.2.3.1;19.3.1 Advance Planning, Structural Engineering Drafting;339
8.2.3.2;19.3.2 Permitting Planning;340
8.2.3.3;19.3.3 Construction Planning;342
8.2.3.3.1;19.3.3.1 Formwork Drawings;342
8.2.3.3.2;19.3.3.2 Reinforcement Model;342
8.2.3.3.3;19.3.3.3 Reinforcement Drawings;343
8.2.4;19.4 Summary;344
8.3;20 BIM for Energy Analysis;346
8.3.1;20.1 Problem Description and Definition;346
8.3.2;20.2 Energy Demand Calculation and Building ServicesEngineering;347
8.3.3;20.3 Data Exchange and Software-Support;348
8.3.3.1;20.3.1 Formats for the Exchange of Energy-Related Building and Facility Data Using BIM;348
8.3.3.2;20.3.2 Required Definitions;349
8.3.3.3;20.3.3 Software-Support for the Tasks of Dimensioning, Energy Demand Calculation, and Building Simulation;350
8.3.4;20.4 Process Chain: Use of BIM for the Tasks of Energy Demand Calculation and Building Simulation;352
8.3.5;20.5 Summary;354
8.3.6;References;355
8.4;21 BIM for Construction Safety and Health;357
8.4.1;21.1 Introduction;357
8.4.2;21.2 Accident Statistics and Root Causes;358
8.4.3;21.3 Legal Obligations and Responsibilities Differ by Country;360
8.4.4;21.4 Problems in the State-of-the-Art Safety Planning;361
8.4.5;21.5 Integrating BIM in the Safety Planning Process;363
8.4.6;21.6 Safety and BIM in the Project Lifecycle;364
8.4.7;21.7 Safety Rule Checking in BIM;365
8.4.8;21.8 Real World Applications of Safety Rule Checking in BIM;367
8.4.9;21.9 Return on Investment;369
8.4.10;21.10 The Future Role of BIM in Safety and Health Planning;370
8.4.11;21.11 Summary;371
8.4.12;References;372
8.5;22 BIM-Based Code Compliance Checking;374
8.5.1;22.1 Introduction;374
8.5.2;22.2 Challenges of Automated Code Compliance Checking;376
8.5.3;22.3 Formal and Content-Related Correctness of Building Models;378
8.5.4;22.4 Selected Software Products;379
8.5.4.1;22.4.1 CORENET;380
8.5.4.2;22.4.2 Jotne Express Data Manager;381
8.5.4.3;22.4.3 BIM Assure;382
8.5.4.4;22.4.4 Solibri Model Checker;382
8.5.5;22.5 Current Research;384
8.5.6;22.6 Summary;386
8.5.7;References;387
8.6;23 BIM-Based Quantity Take-Off;389
8.6.1;23.1 Introduction;389
8.6.2;23.2 Work Breakdown Structure;390
8.6.3;23.3 Modeling Guidelines for QTO;391
8.6.4;23.4 Data Modeling for QTO;393
8.6.5;23.5 Work Flow of BIM-Based QTO;394
8.6.6;23.6 Summary;396
8.6.7;References;397
8.7;24 Building Surveying for As-Built Modeling;398
8.7.1;24.1 Introduction;398
8.7.2;24.2 Coordinate System;400
8.7.3;24.3 Manual Surveying;402
8.7.4;24.4 Tacheometry;404
8.7.5;24.5 Photogrammetry;406
8.7.5.1;24.5.1 Single Image Photogrammetry;406
8.7.5.2;24.5.2 Multi-image Photogrammetry;407
8.7.5.3;24.5.3 Stereo Photogrammetry;408
8.7.5.4;24.5.4 UAV Photogrammetry;410
8.7.6;24.6 Terrestrial Laser Scanning;411
8.7.6.1;24.6.1 Laser Scanning in Combinationwith Photogrammetry;414
8.7.7;24.7 Summary;415
8.7.8;References;416
8.8;25 BIM in Industrial Prefabrication for Construction;417
8.8.1;25.1 Industrial Production in the Building Sector;417
8.8.2;25.2 Production Models for Digital Production Methods;419
8.8.2.1;25.2.1 CAD-CAM Process Schema;419
8.8.2.2;25.2.2 Requirements for Production Models;420
8.8.3;25.3 Object-Oriented CAD Systems in Manufacturing;420
8.8.4;25.4 Further Aspects of Industrial Prefabrication;422
8.8.4.1;25.4.1 Product Lifecycle Management (PLM) Systems;423
8.8.4.2;25.4.2 Computer-Aided Quality (CAQ) Management;423
8.8.4.3;25.4.3 Additive Manufacturing (AM) Techniques;423
8.8.5;25.5 Summary;424
8.8.6;References;424
8.9;26 BIM for 3D Printing in Construction;425
8.9.1;26.1 Introduction;426
8.9.2;26.2 Background on 3D Printing;427
8.9.2.1;26.2.1 Principles of 3D Printing;427
8.9.2.1.1;26.2.1.1 Stereolithography (SLA);427
8.9.2.1.2;26.2.1.2 Selective Laser Sintering (SLS);428
8.9.2.1.3;26.2.1.3 Fused Deposition Modeling (FDM);429
8.9.2.1.4;26.2.1.4 Powder Bed and Inkjet Head 3D Printing;429
8.9.2.2;26.2.2 Cost of 3D Printing;430
8.9.2.3;26.2.3 Direct and Indirect Use of 3D Printing;431
8.9.2.4;26.2.4 Techniques in Construction Applications;431
8.9.2.5;26.2.5 Ongoing Research Activities;433
8.9.3;26.3 Methods;435
8.9.3.1;26.3.1 Interdisciplinary Team Building for Setting Goals and Work Steps;435
8.9.3.2;26.3.2 Automated 3D Printing Technology and Process in a Factory Setting;436
8.9.4;26.4 Experiments and Results;438
8.9.4.1;26.4.1 ``Stuttgart 21'' Main Central Station;438
8.9.4.2;26.4.2 Small Scale Testing;439
8.9.4.3;26.4.3 Large Scale Testing;439
8.9.5;26.5 The Role of BIM and Robots in the 3D Printing Process;440
8.9.5.1;26.5.1 General Requirements for 3D Printing;443
8.9.5.2;26.5.2 3D Printing with Robots;444
8.9.6;26.6 Summary;447
8.9.7;References;448
8.10;27 BIM-Based Production Systems;451
8.10.1;27.1 Production Systems in the Building Sector;452
8.10.2;27.2 Software Systems Supporting Production Systems;453
8.10.3;27.3 Data Communication on the Project;454
8.10.4;27.4 System Structure and Components;456
8.10.4.1;27.4.1 Software Provision and Data Storage;456
8.10.4.2;27.4.2 Web Portal;457
8.10.4.3;27.4.3 Document Management;457
8.10.4.4;27.4.4 Mobile Devices;458
8.10.4.5;27.4.5 3D BIM Viewer;459
8.10.4.6;27.4.6 Geographic Information System (GIS);460
8.10.4.7;27.4.7 Management Dashboard and Reporting;461
8.10.4.8;27.4.8 Schedule;461
8.10.4.9;27.4.9 Further Modules;463
8.10.5;27.5 Application in a Construction Project;463
8.10.5.1;27.5.1 Users and Project Stages;463
8.10.5.2;27.5.2 Implementation in the Project;464
8.10.5.3;27.5.3 Summary;465
8.11;28 BIM-Based Progress Monitoring;466
8.11.1;28.1 Introduction;466
8.11.2;28.2 State of the Art;467
8.11.3;28.3 Concept;470
8.11.4;28.4 Data Acquisition and Point Cloud Generation;470
8.11.4.1;28.4.1 Handheld Camera;471
8.11.4.2;28.4.2 UAV;472
8.11.4.3;28.4.3 Crane Camera;472
8.11.4.4;28.4.4 Conclusion;473
8.11.5;28.5 As-Planned vs. As-Built Comparison;473
8.11.5.1;28.5.1 Enhancing Detection Rates;474
8.11.5.2;28.5.2 Process Comparison;477
8.11.6;28.6 Case Studies;477
8.11.7;28.7 Summary;478
8.11.8;References;478
8.12;29 BIM in the Operation of Buildings;480
8.12.1;29.1 Introduction;480
8.12.2;29.2 Property Portfolios;482
8.12.3;29.3 Work Stages During the Operation Phase;483
8.12.3.1;29.3.1 Requirements Management;484
8.12.3.2;29.3.2 Preparation for Commissioning;486
8.12.3.3;29.3.3 Commissioning;487
8.12.3.4;29.3.4 Ongoing Operation;488
8.12.3.5;29.3.5 Change of Owner/Operator;489
8.12.3.6;29.3.6 Data Acquisition for Existing Buildings;490
8.12.4;29.4 Software Systems for the Operation of Buildings;492
8.12.5;29.5 Summary;493
8.12.6;References;494
9;Part V Industrial Practice;495
9.1;30 BIM at HOCHTIEF Solutions;496
9.1.1;30.1 BIM History Within HOCHTIEF Solutions;496
9.1.2;30.2 From 2D to BIM;497
9.1.3;30.3 Examples of Completed and Ongoing Projects;499
9.1.3.1;30.3.1 Barwa Commercial Avenue, Qatar;499
9.1.3.2;30.3.2 Elbe Philharmonic Hall, Hamburg;502
9.1.3.2.1;30.3.2.1 Building Statics Do Not Allow for Adding Openings at a Later Time;503
9.1.3.2.2;30.3.2.2 From Areas to Structures;505
9.1.4;30.4 BIM Benefits;506
9.1.5;30.5 Summary;507
9.2;31 Arup's Digital Future: The Path to BIM;509
9.2.1;31.1 Introduction to Arup;509
9.2.2;31.2 Arup's Global BIM Strategy: Phase 1;510
9.2.2.1;31.2.1 Drivers for BIM in Arup;511
9.2.2.2;31.2.2 Aim of the BIM Strategy;512
9.2.2.3;31.2.3 Mission Statement;512
9.2.2.4;31.2.4 Implementing BIM: The Risks;513
9.2.3;31.3 Managing the Transition;513
9.2.3.1;31.3.1 Incentives;514
9.2.3.2;31.3.2 Action Plan;516
9.2.3.3;31.3.3 Skills;517
9.2.3.4;31.3.4 Resources;518
9.2.3.5;31.3.5 Measuring Success: The BIM Maturity Measure;518
9.2.4;31.4 Implementation Activities;519
9.2.4.1;31.4.1 Activity Area 1: Governance and Leadership;519
9.2.4.1.1;31.4.1.1 Tasks and Objectives;520
9.2.4.1.2;31.4.1.2 Activity Example: Global Benchmarking Heat Map;520
9.2.4.2;31.4.2 Activity Area 2: People and Skills;520
9.2.4.2.1;31.4.2.1 Tasks and Objectives;520
9.2.4.2.2;31.4.2.2 Activity Example: BIM for Leaders;522
9.2.4.3;31.4.3 Activity Area 3: Marketing and Communication;522
9.2.4.3.1;31.4.3.1 Tasks and Objectives;522
9.2.4.3.2;31.4.3.2 Activity Example: Marketing and Communication;523
9.2.4.4;31.4.4 Activity Area 4: Processes;523
9.2.4.4.1;31.4.4.1 Tasks and Objectives;524
9.2.4.4.2;31.4.4.2 Activity Example Processes: The Arup BIM Maturity Measure;524
9.2.4.5;31.4.5 Activity Area 5: Technology;526
9.2.4.5.1;31.4.5.1 Tasks and Objectives;526
9.2.4.5.2;31.4.5.2 Activity Example: Technology;527
9.2.4.6;31.4.6 Activity Area 6: Research and Development;527
9.2.4.6.1;31.4.6.1 Tasks and Objectives;527
9.2.4.6.2;31.4.6.2 Activity Example: Research and Development;528
9.2.4.7;31.4.7 Activity Area 7: Business Development and Project Support;529
9.2.4.7.1;31.4.7.1 Tasks and Objectives;529
9.2.4.7.2;31.4.7.2 Activity Example: Business Development and Project Support;530
9.2.5;31.5 Hand-Back to the Business;531
9.2.6;31.6 How Are We Doing?;531
9.2.6.1;31.6.1 Maturity Measurement;532
9.2.6.1.1;31.6.1.1 Analysis and Insight;532
9.2.6.1.2;31.6.1.2 Further Developments;532
9.2.6.1.3;31.6.1.3 Encouraging BIM Across the Industry;533
9.2.7;31.7 Arup's Global BIM Strategy: Phase 2;533
9.2.8;31.8 Summary;533
9.2.9;Reference;534
9.3;32 BIM at OBERMEYER Planen + Beraten;535
9.3.1;32.1 Technical Background and History;535
9.3.2;32.2 The Importance of BIM from a Company Perspective;536
9.3.3;32.3 BIM Development;537
9.3.4;32.4 Project Examples;538
9.3.4.1;32.4.1 Second Principal Rapid Transit Line in Munich, Germany;538
9.3.4.2;32.4.2 BIM Pilot Project Auenbach Viaduct, Germany;541
9.3.4.3;32.4.3 Al Ain Hospital, Abu Dhabi, United Arab Emirates;543
9.3.5;32.5 Summary;547
9.4;33 BIM at Hilti;548
9.4.1;33.1 Introduction and General Approach;548
9.4.2;33.2 Hilti BIM Solution: Design;550
9.4.2.1;33.2.1 PROFIS Anchor;550
9.4.2.2;33.2.2 PROFIS Installation;550
9.4.2.3;33.2.3 Hilti BIM/CAD-Library;551
9.4.2.4;33.2.4 Hilti Button for Firestop;551
9.4.3;33.3 Hilti BIM Solution: Execution;552
9.4.4;33.4 Hilti BIM Solution: Operation;553
9.4.5;33.5 Summary;553
9.5;34 BIM at STRABAG;554
9.5.1;34.1 Overview;555
9.5.2;34.2 Motivation for BIM;556
9.5.3;34.3 BIM.5D® Development and Applications;557
9.5.3.1;34.3.1 Definitions;558
9.5.3.2;34.3.2 Roadmap;559
9.5.3.3;34.3.3 Use Cases;559
9.5.4;34.4 Examples of BIM.5D® Applications;561
9.5.4.1;34.4.1 Applications in the Design, Planning and Construction Phases;561
9.5.4.2;34.4.2 Object-Oriented Foundation and Infrastructure Modeling;562
9.5.4.3;34.4.3 Quantity Estimation, Cost Calculation, Construction Scheduling;565
9.5.4.4;34.4.4 From Digital Planning to Automated Production;565
9.5.4.5;34.4.5 As-Built Documentation and Facility Management;566
9.5.5;34.5 Summary;567
9.5.6;References;567
10;Part VI Summary and Outlook;568
10.1;35 Conclusions and Outlook;569
11;Glossary;573
12;Index;577

1 Building Information Modeling – Why? What? How?.- 2 Principles of Geometric Modeling.- 3 Data modeling.- 4 Process modeling.- 5 Industry Foundation Classes – A standardized data model for the vendor-neutral exchange of digital building models.- 6 Process-based definition of model content.- 7 IFC certification of BIM software.- 8 Structured vocabularies in construction: Classifications, taxonomies and ontologies.- 9 COBie – A specification for the Construction Operations Building Information Exchange.- 10 Linked Data.- 11 Modeling cities and landscapes in 3D with CityGML.- 12 BIM programming.- 13 BIM Project Management.- 14 Collaborative Data Management.- 15 Common Data Environment.- 16 BIM Manager.- 17 Integrating BIM in Construction Contracts.- 18 BIM-based design coordination.- 19 BIM for structural engineering.- 20 BIM for energy analysis.- 21 BIM for construction safety and health.- 22 BIM-based Code Compliance Checking.- 23 BIM-based Quantity Take-Off.- 24 Building surveying for as-built modeling.- 25 BIM in industrial prefabrication for construction.- 26 BIM for 3D printing in construction.- 27 BIM-based production systems.- 28 BIM-based progress monitoring.- 29 BIM in the Operation of Buildings.- 30 BIM at HOCHTIEF Solutions.- 31 Arup’s digital future: the path to BIM.- 32 BIM at OBERMEYER Planen + Beraten.- 33 BIM at Hilti.- 34 BIM at STRABAG.- 35 Conclusions and Outlook.


André Borrmann
is Full Professor for Computational Modeling and Simulation, and Chairman of the Center of Digital Methods for the Built Environment at Technische Universität München. His research focuses on the technological aspects of Building Information Modeling. Professor Borrmann is currently chairing the German Association of Computing in Civil Engineering (GACCE). He is advising the German government concerning its BIM roadmap and is actively supporting the construction industry’s shift towards the adoption of advanced digital technology. Related to this, he is pushing forward the international standardization activities of buildingSMART.
Markus König
is Full Professor for Computing in Engineering at Ruhr-Universität Bochum. His research interests include building information modeling, lean construction, simulation-based scheduling, knowledge management, internet of things as well as virtual and augmented reality. He supported the development of the “Road Map for Digital Design and Construction” for the German government and is now co-responsible for its implementation by 2020. Professor König established the first BIM Professional certification program in Germany and initiated various practical BIM networks in Germany.
Christian Koch
is Full Professor and Chair of Intelligent Technical Design, and Course Director of the M.Sc. Program Digital Engineering at the Bauhaus-Universität Weimar. His research and teaching interests are in the foundations and applications of modern information and communication technology (ICT) during the design, the construction and the operation of civil infrastructure using methods of Building Information Modeling (BIM), Computer Vision and Machine Learning as well as Virtual and Augmented Reality.
Jakob Beetz
works as a full professor for Computational Design at the Department of Architecture of the RWTH Aachen University, Germany. He has been active in numerous international research, development and standardization efforts in the fields of Building Information Modeling, Computer Supported Collaborative Work, Interoperability, Linked Data and Semantic Web. He is a co-founder of the Open Source model server platform bimserver.org and worked on the development of the Linked Data representation of the Industry Foundation Classes ifcOWL and its standardization.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.