Bretz / Hothorn / Westfall | Multiple Comparisons Using R | E-Book | sack.de
E-Book

E-Book, Englisch, 205 Seiten

Bretz / Hothorn / Westfall Multiple Comparisons Using R


1. Auflage 2010
ISBN: 978-1-4200-1090-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 205 Seiten

ISBN: 978-1-4200-1090-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Adopting a unifying theme based on maximum statistics, Multiple Comparisons Using R describes the common underlying theory of multiple comparison procedures through numerous examples. It also presents a detailed description of available software implementations in R. The R packages and source code for the analyses are available at http://CRAN.R-project.org

After giving examples of multiplicity problems, the book covers general concepts and basic multiple comparisons procedures, including the Bonferroni method and Simes’ test. It then shows how to perform parametric multiple comparisons in standard linear models and general parametric models. It also introduces the multcomp package in R, which offers a convenient interface to perform multiple comparisons in a general context. Following this theoretical framework, the book explores applications involving the Dunnett test, Tukey’s all pairwise comparisons, and general multiple contrast tests for standard regression models, mixed-effects models, and parametric survival models. The last chapter reviews other multiple comparison procedures, such as resampling-based procedures, methods for group sequential or adaptive designs, and the combination of multiple comparison procedures with modeling techniques.

Controlling multiplicity in experiments ensures better decision making and safeguards against false claims. A self-contained introduction to multiple comparison procedures, this book offers strategies for constructing the procedures and illustrates the framework for multiple hypotheses testing in general parametric models. It is suitable for readers with R experience but limited knowledge of multiple comparison procedures and vice versa.
See Dr. Bretz discuss the book.

Bretz / Hothorn / Westfall Multiple Comparisons Using R jetzt bestellen!

Zielgruppe


Researchers and graduate and advanced undergraduate students in statistics; applied scientists in biology, medicine, pharmaceutical industry, molecular biology, and agriculture.

Weitere Infos & Material


Introduction

General Concepts
Error rates and general concepts
Construction methods
Methods based on Bonferroni’s inequality
Methods based on Simes’ inequality

Multiple Comparisons in Parametric Models
General linear models
Extensions to general parametric models
The multcomp package

Applications
Multiple comparisons with a control
All pairwise comparisons
Dose response analyses
Variable selection in regression models
Simultaneous confidence bands
Multiple comparisons under heteroscedasticity
Multiple comparisons in logistic regression models
Multiple comparisons in survival models
Multiple comparisons in mixed-effects models

Further Topics
Resampling-based multiple comparison procedures
Group sequential and adaptive designs
Combining multiple comparisons with modeling

Bibliography
Index


Frank Bretz is Global Head of the Statistical Methodology group at Novartis Pharma AG in Basel, Switzerland. He is also an adjunct professor at the Hannover Medical School in Germany.
Torsten Hothorn is a professor of biostatistics in the Faculty of Mathematics, Computer Science and Statistics at Ludwig-Maximilians-Universität München in Germany.
Peter Westfall is James and Marguerite Niver and Paul Whitfield Horn Professor of Statistics and associate director of the Center for Advanced Analytics and Business Intelligence at Texas Tech University in Lubbock, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.