E-Book, Englisch, 143 Seiten, eBook
Brodusch / Demers / Gauvin Field Emission Scanning Electron Microscopy
1. Auflage 2018
ISBN: 978-981-10-4433-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
New Perspectives for Materials Characterization
E-Book, Englisch, 143 Seiten, eBook
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-981-10-4433-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Acronyms;9
3;Symbols;11
4;1 Introduction;13
4.1;References;15
5;2 Developments in Field Emission Gun Technologies and Advanced Detection Systems;17
5.1;2.1 Cold-Field Emission Technology;17
5.2;2.2 CFE-SEM for Low Voltage Microscopy;20
5.3;2.3 Scanning Transmission Microscopy in the SEM;23
5.4;References;23
6;3 Electron Detection Strategies for High Resolution Imaging: Deceleration and Energy Filtration;25
6.1;3.1 Principles;25
6.2;3.2 Application of Dual In-Lens Electron Detection;34
6.3;3.3 Energy filtration;38
6.4;References;46
7;4 Low Voltage SEM;48
7.1;4.1 Strategy of Characterization: Deceleration and Energy Filtration;49
7.2;4.2 High Resolution Imaging;50
7.3;4.3 Low Voltage, Specimen Charging, and Material Contrast;52
7.4;4.4 Ultra-Low Voltage SEM: Uses and Limitations;54
7.5;References;56
8;5 Low Voltage STEM in the SEM;58
8.1;References;63
9;6 The f-Ratio Method for X-Ray Microanalysis in the SEM;65
9.1;6.1 The Limits of X-Ray Microanalysis Models;65
9.2;6.2 Description of the f-Ratio Method;65
9.2.1;6.2.1 f-Ratio Method for Binary System;67
9.2.2;6.2.2 Generalization of the f-Ratio Method for Multi-elements;69
9.3;6.3 Examples of Quantitative X-Ray Analysis Using the f-Ratio Method;69
9.3.1;6.3.1 Binary Examples;69
9.3.1.1;6.3.1.1 Quantification of Au–Cu Binary Alloy with a CFE-SEM;69
9.3.1.2;6.3.1.2 Quantification of Al–Mg Diffusion Couple;71
9.3.2;6.3.2 Multi-elements Example;71
9.3.2.1;6.3.2.1 Quantification of Al–Mg–Zn Ternary Alloy with a CFE-SEM;71
9.4;6.4 Summary;73
9.5;References;73
10;7 X-Ray Imaging with a Silicon Drift Detector Energy Dispersive Spectrometer;76
10.1;7.1 X-Ray Emission Rate with Low Accelerating Voltage and Thin Film;77
10.2;7.2 Comparison of Silicon Drift Detector Geometry;79
10.2.1;7.2.1 Solid Angle;80
10.2.2;7.2.2 Takeoff Angle;81
10.3;7.3 X-Ray Map Acquisition at High Spatial Resolution and High Signal-to-Noise Ratio;83
10.3.1;7.3.1 Low Accelerating Voltage;84
10.3.2;7.3.2 Low Voltage STEM;86
10.3.3;7.3.3 Phase Map Analysis;88
10.3.4;7.3.4 Removal of the Effect of Electron Channeling on X-Ray Emission in Thin Specimens;90
10.4;7.4 Summary;91
10.5;References;91
11;8 Electron Diffraction Techniques in the SEM;94
11.1;8.1 Electron Channeling Contrast Imaging;95
11.2;8.2 Low Voltage STEM Defects Imaging;98
11.3;8.3 Electron Backscatter Diffraction;100
11.4;8.4 Dark-Field Electron Backscatter Diffraction;102
11.5;8.5 Transmission Forward Electron Backscatter Diffraction;105
11.6;8.6 Dark-Field Imaging with a Forecaster Detector in Transmission Mode;109
11.7;References;110
12;9 Magnetic Domain Imaging;115
12.1;9.1 Type-I Contrast;115
12.2;9.2 Type-II Contrast;116
12.3;9.3 Type-III Contrast;119
12.4;References;120
13;10 Advanced Specimen Preparation;122
13.1;10.1 Surface Preparation;122
13.2;10.2 Surface Cleaning;126
13.3;10.3 Charging Compensation with Ionic Liquid Treatment;129
13.4;References;133
14;11 Conclusion and Perspectives;136
15;Index;139