E-Book, Deutsch, 315 Seiten, eBook
Buchberger / Lichtenberger Mathematik für Informatiker I
2. Auflage 1981
ISBN: 978-3-642-68351-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Die Methode der Mathematik
E-Book, Deutsch, 315 Seiten, eBook
ISBN: 978-3-642-68351-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Die Methode der Mathematik.- Die Methode der Mathematik.- Beispiel: Ein Schaltnetz.- Der Vorgang des Problemlösens: Übersicht.- Fallstudie: Dynamische Programmierung.- Reales Problem: Optimaler Einsatz von Investitionen.- Problemanalyse, Modellproblem.- Erster Lösungsversuch.- Kritische Beurteilung des Lösungsverfahrens und Anwendung.- Neuformulierung des Problems.- Zweiter Lösungsversuch.- Verwendung von gespeichertem Wissen.- Kritische Beurteilung des verbesserten Lösungsverfahrens und Anwendung.- Dokumentation und Präsentation der Lösung.- Übungsarbeit.- Methodische Analyse der Fallstudie.- Zur Problemanalyse.- Zur Arbeit mit der Literatur.- Zur Präsentation und Dokumentation von erarbeiteten Problemlösungen.- Zur Sprache.- Übungen und Ergänzungen.- Fallstudie: Sortieren.- Vorgelegtes Problems Sortieren einer Kartei.- Problemanalyse, Modellproblem.- Entwurf eines Lösungsverfahrens.- Kritische Beurteilung des Lösungsverfahrens.- Literatursuche.- Dokumentation des Lösungsverfahrens.- Übungsarbeit.- Methodische Analyse der Fallstudie.- Zur Problemanalyse: Standardmodelle.- Das Standardmodell „Menge“.- Zur Problemanalyse und zum strukturierten Entwurf von Lösungsverfahren.- Zum Entwurf von Lösungsverfahren: Korrektheitsbeweise für Programme.- Übungen und Ergänzungen.- Fallstudie: Komplexitätsanalyse.- Vorgelegtes Problem: Komplexitätsanalyse e’ines Sortierprogramms.- Problemanalyse, Modellproblem.- Lösung des Problems.- Verwendung der Literatur.- Dokumentation der Lösung.- Übungsarbeit.- Methodische Analyse der Fallstudie.- Zur Problemanalyse.- Zur Technik des Problemlösens: Standardprobleme.- Weitere Grundbegriffe aus der Mengenlehre.- Zur Beweistechniks: Induktionsbeweise.- Zur Beweistechnik: Der Umgang mit dem ?- und ? -Zeichen.-Zur Beurteilung von Algorithmen: Komplexitätsanalysen.- Standardprobleme der elementaren Kombinatorik.- Übungen und Ergänzungen.- Fallstudie: Ein Nimmspiel.- Das Problem.- Problemanalyse.- Erarbeitung der Bestimmungsstücke des Problems.- Ergebnis der Problemanalyse.- Mehr Wissen über die beteiligten Begriffe.- Beweis der Vermutungen.- Ein Algorithmus, der auf dem neuen Wissen aufbaut.- Methodische Analyse der Fallstudie.- Zur Problemanalyse: Explizite Entscheidungsprobleme.- Zur Problemanalyse: Implizite Probleme, Datentypen.- Zur Technik des Problemlösens: Beweisen.- Übungen und Ergänzungen.- Literatur zum Thema dieser Vorlesung.- Zitierte Literatur.- Symbolverzeichnis.- Stichwortverzeichnis.




