Campo | The Complete Part Design Handbook | E-Book | www.sack.de
E-Book

E-Book, Englisch, 891 Seiten

Campo The Complete Part Design Handbook

For Injection Molding of Thermoplastics
1. Auflage 2013
ISBN: 978-3-446-41292-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: 1 - PDF Watermark

For Injection Molding of Thermoplastics

E-Book, Englisch, 891 Seiten

ISBN: 978-3-446-41292-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: 1 - PDF Watermark



This handbook was written for the injection molding product designer who has a limited knowledge of engineering polymers. It is a guide for the designer to decide which resin and design geometries to use for the design of plastic parts. It can also offer knowledgeable advice for resin and machine selection and processing parameters. Manufacturer and end user satisfaction is the ultimate goal.
This book is an indispensable, all inclusive, reference guide. New illustrations, graphs and equations have been included to provide additional clarity for complex ideas.
Contents:
- Plastic Materials Selection Guide
- Engineering Product Design
- Structural Design for Thermoplastics
- Thermoplastic Gearing Design
- Plastic Journal Bearing Design
- Thermoplastic Spring Design
- Thermoplastic Pressure Vessel Design
- Thermoplastic Assembly Methods
- Thermoplastic Effects on Design
- Thermoplastic Injection Mold Design
- Performance Testing of Thermoplastics
- Thermoplastic Product Cost Analysis
Campo The Complete Part Design Handbook jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Dedication;6
2;Preface;8
3;Contents;10
4;1 Polymeric Materials;24
4.1;1.1 Introduction to Plastic Materials;24
4.1.1;1.1.1 Beginning of Plastics;24
4.1.2;1.1.2 Polymer Families;26
4.2;1.2 Thermoplastic Polymers;27
4.2.1;1.2.1 Classification of Polymers by Performance;27
4.2.2;1.2.2 Molecular Structure of Plastic Materials;29
4.2.3;1.2.3 Acrylonitrile-Butadiene-Styrene (ABS);29
4.2.4;1.2.4 Acetal (POM, Polyacetal);32
4.2.5;1.2.5 Polymethyl Metacrylate (Acrylic, PMMA);35
4.2.6;1.2.6 High Temperature Nylon (HTN);37
4.2.7;1.2.7 Ionomer Polymers;39
4.2.8;1.2.8 Liquid Crystal Polymer (LCP);41
4.2.9;1.2.9 Polyamide (PA, Nylon);43
4.2.10;1.2.10 Polyetherimide (PEI);46
4.2.11;1.2.11 Polyarylate (PAR);48
4.2.12;1.2.12 Polyetherether Ketone (PEEK);50
4.2.13;1.2.13 Polycarbonate (PC);51
4.2.14;1.2.14 Modified Polyphenylene Oxide (PPO);54
4.2.15;1.2.15 Polybutylene Terephthalate (PBT);56
4.2.16;1.2.16 Polyethylene Terephthalate (PET);57
4.2.17;1.2.17 Polyethylene (PE);59
4.2.18;1.2.18 Polytetrafluoroethylene (PTFE);62
4.2.19;1.2.19 Polyphenylene Sulfi de (PPS);67
4.2.20;1.2.20 Polypropylene (PP);69
4.2.21;1.2.21 Polystyrene (PS);71
4.2.22;1.2.22 Polysulfone (PSU);72
4.2.23;1.2.23 Polyvinyl Chloride (PVC);74
4.2.24;1.2.24 Styrene Acrylonitrile (SAN);76
4.3;1.3 Thermoplastic Elastomers (TPE);78
4.3.1;1.3.1 Thermoplastic Elastomer Families;79
4.3.2;1.3.2 Thermoplastic Polyurethane Elastomer (TPU);80
4.3.3;1.3.3 Styrenic Block Copolymer (SBS);83
4.3.4;1.3.4 Polyolefin Thermoplastic Elastomer (TPO);85
4.3.5;1.3.5 Elastomeric Alloy Thermoplastic Vulcanized (TPV).;88
4.3.6;1.3.6 Melt Processible Rubber (MPR);92
4.3.7;1.3.7 Copolyester Thermoplastic Elastomer;94
4.3.8;1.3.8 Polyamide Thermoplastic Elastomer;98
4.4;1.4 Liquid Injection Molding Silicone (LIM®);100
4.4.1;1.4.1 LIM® Silicone Processing;102
4.5;1.5 Thermoset Polymers;105
4.5.1;1.5.1 Polyester Alkyd (PAK);106
4.5.2;1.5.2 Diallyl Phthalate/Isophthalate (DAP, DAIP);108
4.5.3;1.5.3 Melamine Formaldehyde (MF);110
4.5.4;1.5.4 Cellulosic Ester;111
4.5.5;1.5.5 Cyanate;112
4.5.6;1.5.6 Epoxy (EP);115
4.5.7;1.5.7 Phenol Formaldehyde (Phenolic, PF);117
4.5.8;1.5.8 Polybutadiene (PB);120
4.5.9;1.5.9 Bismaleimide (BMI);120
4.5.10;1.5.10 Unsaturated Polyester (UP);121
4.5.11;1.5.11 Polyimide (PI);124
4.5.12;1.5.12 Polyxylene;126
4.5.13;1.5.13 Polyurethane (PUR);127
4.5.14;1.5.14 Silicone (SI);130
4.5.15;1.5.15 Urethane Hybrid;132
4.5.16;1.5.16 Vinyl Ester (BPA);134
5;2 Engineering Product Design;138
5.1;2.1 Understanding the Properties of Materials;138
5.1.1;2.1.1 Plastics Selection Guidelines;140
5.2;2.2 Structural Design of Thermoplastic Components;143
5.2.1;2.2.1 Stress-Strain Behavior;144
5.2.2;2.2.2 Tensile Testing of Viscoelastic Materials;145
5.3;2.3 Mechanical Properties of Materials;149
5.4;2.4 Tension and Compression Curves;152
5.5;2.5 Modulus of Elasticity (E);152
5.6;2.6 Stress and Strain Analysis;153
5.7;2.7 Thermoplastics Elastic Design Method;154
5.7.1;2.7.1 Working Stress;155
5.7.2;2.7.2 Compressive Stress;156
5.7.3;2.7.3 Flexural Stress;157
5.7.4;2.7.4 Coefficient of Linear Thermal Expansion (?);158
5.7.5;2.7.5 Poisson’s Ratio (?);159
5.7.6;2.7.6 Moisture Effects on Nylon;159
5.7.7;2.7.7 Effects of Temperature on the Behavior of Thermoplastics;160
5.8;2.8 Stress-Strain Recovery (Hysteresis);161
5.8.1;2.8.1 Creep Behavior of Thermoplastics;161
5.8.2;2.8.2 Creep and Rupture Under Long-Term Load;162
5.8.3;2.8.3 Creep and Relaxation of Thermoplastics;162
5.9;2.9 Flexural Beam Stress Distribution;168
5.10;2.10 Viscoelastic Modulus Design Method;170
5.11;2.11 Centroid, Section Area, and Moment of Inertia;173
5.12;2.12 Radius of Gyration;181
5.13;2.13 Stress Analysis of Beams;181
5.13.1;2.13.1 Types of Loads;181
5.13.2;2.13.2 Normal Stresses in Beams;182
5.13.3;2.13.3 Shearing Force;187
5.14;2.14 Beam Deflection Analysis;191
5.14.1;2.14.1 Beam Deflection by Double Integration Method;192
5.14.2;2.14.2 Beam Deflection Moment Area Method;201
5.14.3;2.14.3 Applications of Moment Area and Double Integration Methods;202
5.14.4;2.14.4 Beam Deflection Superposition Method;206
5.15;2.15 Column Structural Analysis;211
5.15.1;2.15.1 Long Slender Column Critical Load (PCr);211
5.15.2;2.15.2 Column Slenderness Ratio (L / r);211
5.15.3;2.15.3 Eccentrically Loaded Columns;211
5.16;2.16 Flat Circular Plates;217
5.16.1;2.16.1 Classification;218
5.16.2;2.16.2 Stress Analysis Methods;218
5.16.3;2.16.3 Flat Circular Plate Equations;219
5.16.4;2.16.4 Flat Circular Plate Stresses;220
5.16.5;2.16.5 Theory of Flexure Comparison;221
5.16.6;2.16.6 Circular Plates Simply Supported, Concentrated center Load;221
5.16.7;2.16.7 Flat Circular Plate under Concentrated Center Load;222
5.16.8;2.16.8 Flat Circular Plate with Fixed Edge;222
5.16.9;2.16.9 Flat Circular Plate Compensation Factor for Deflection;223
5.16.10;2.16.10 Flat Circular Plate Bending under Edge Boundaries;223
5.17;2.17 Torsion Structural Analysis;230
6;3 Structural Designs for Thermoplastics;234
6.1;3.1 Uniform and Symmetrical Wall Thickness;234
6.1.1;3.1.1 Part Geometries Difficult to Mold;235
6.1.2;3.1.2 Wall Draft Angle per Side;236
6.2;3.2 Structural Rib Design;236
6.2.1;3.2.1 Rib Strength Analysis Method;238
6.3;3.3 Internal Sharp Corners and Notches;245
6.4;3.4 Injection Molded Thermoplastic Bosses;245
6.5;3.5 Injection Molded Thermoplastic Threads;247
6.6;3.6 Collapsible Core for Molding Internal Threads;247
6.7;3.7 Preferred Standard Thread Forms for Thermoplastics;248
6.7.1;3.7.1 Thermoplastic Threads Creep Effects;250
6.8;3.8 Injection Molded Products with Undercuts;250
6.9;3.9 Injection Molded Integral Life Hinges;255
6.9.1;3.9.1 Injection Molded Integral Life Hinge Design;256
6.9.2;3.9.2 Mold Design Considerations for Hinges;258
6.9.3;3.9.3 Proper Gate Design for Life Hinges;259
6.10;3.10 Conventional Types of Pin Hinges;260
6.11;3.11 Metal Inserts for Thermoplastic Encapsulation;262
6.11.1;3.11.1 Machined Metal Threaded Insert Tolerances;263
6.11.2;3.11.2 Thermoplastic Boss Wall Thickness for Metal Inserts;263
6.11.3;3.11.3 Press/Lock Slotted Metal Insert Installation After Molding;265
6.11.4;3.11.4 Cold Forged Metal Inserts for Encapsulation;266
6.11.5;3.11.5 Threaded Female Metal Inserts;267
6.11.6;3.11.6 Metal Inserts Anchorage for ThermoplasticEncapsulation;269
6.11.7;3.11.7 Metal Insert Encapsulating Process Problems;272
6.11.8;3.11.8 Special Metal Inserts Anchorage for Encapsulation;273
6.11.9;3.11.9 Electrical Lead Inserts for Encapsulation;276
6.11.10;3.11.10 Inserts Preparation for Molding Encapsulation;278
7;4 Thermoplastic Gearing Design;280
7.1;4.1 Classification of Gears;281
7.1.1;4.1.1 Gears Parallel to the Shaft Axis;281
7.1.2;4.1.2 Bevel Gears, Nonparallel and Intersecting Shafts;282
7.1.3;4.1.3 Hypoid Gears, Nonparallel and Nonintersecting Shafts;284
7.1.4;4.1.4 Gears for Straight Linear Motion;285
7.2;4.2 Standard Injection Molded Thermoplastic Gears;286
7.2.1;4.2.1 Selection of Thermoplastic Resins for Gears;287
7.2.2;4.2.2 Horsepower Equations for Gears;289
7.2.3;4.2.3 Spur Gear Terminology and Definitions;291
7.3;4.3 Properties Required for Injection Molded Thermoplastic Gears;295
7.4;4.4 Thermoplastic Spur Gear Design Requirements;296
7.4.1;4.4.1 Gating Effects on Thermoplastic Gear Roundness Dimensions;298
7.4.2;4.4.2 Multifunction Designs with Thermoplastic Gears;300
7.4.3;4.4.3 Mounting Thermoplastic Gears on Metal Shafts;302
7.4.4;4.4.4 Standard Spur Gears, Equations, and Calculations;302
7.4.5;4.4.5 Spur Gear Pitch Backlash;304
7.4.6;4.4.6 Standard Spur Gear Tooth Size Selection;305
7.4.7;4.4.7 Standard Gear Total Composite Tolerances;306
7.5;4.5 Tolerances and Mold Shrinkage of Thermoplastic Gears;310
7.6;4.6 Standard Helical Gears;312
7.7;4.7 Standard Straight Bevel Gears;313
7.8;4.8 Standard Worm Gears;315
7.8.1;4.8.1 Standard Worm Gear Analysis;316
7.9;4.10 Plastic Gearing Technology Designs;317
7.9.1;4.10.1 Spur and Helical Gears PGT-1 Tooth Design;318
7.9.2;4.10.2 Spur and Helical Gears PGT-2 Tooth Design;320
7.9.3;4.10.3 Spur and Helical Gears PGT-3 Tooth Design;321
7.9.4;4.10.4 Spur and Helical Gears PGT-4 Tooth Design;322
7.9.5;4.10.5 Plastic Gearing Technology Tooth Form Design Variables;323
7.9.6;4.10.6 Maximum Allowable Outside Diameter DO (Max.);325
7.9.7;4.10.7 Spur Gear Tooth Form Comparison;326
7.9.8;4.10.8 Mating Spur Gears Tooth Form Comparison;327
7.9.9;4.10.9 PGT Spur Mating Gears Strength Balance;328
7.9.10;4.10.10 PGT Close Mesh Center Distance Between Spur Gears;331
7.9.11;4.10.11 Maximum Close Mesh Center Distance;332
7.10;4.11 PGT Helical Thermoplastic Gearing;337
7.10.1;4.11.1 PGT-1 Helical Mating Gears Strength Balance;342
7.10.2;4.11.2 PGT-1 Helical Mating Gears Center Distance;345
7.11;4.12 PGT Spur and Helical Gears Horsepower Rating;346
7.11.1;4.12.1 PGT Gear Horsepower Equation Basic Parameters;347
7.12;4.13 PGT Spur and Helical Gear Specifications;351
8;5 Plastic Journal Bearing Design;358
8.1;5.1 Introduction;358
8.2;5.2 Materials Used for Journal Bearings;358
8.2.1;5.2.1 Babbitt Journal Bearings;359
8.2.2;5.2.2 Bronze Journal Bearings;359
8.2.3;5.2.3 Sintered Porous Metal Journal Bearings;359
8.2.4;5.2.4 Plugged Bronze Journal Bearings;359
8.2.5;5.2.5 Carbon-Graphite Journal Bearings;360
8.2.6;5.2.6 Cast-iron Journal Bearings;360
8.2.7;5.2.7 Wooden Journal Bearings;360
8.2.8;5.2.8 Rubber Journal Bearings;360
8.2.9;5.2.9 Self-Lubricated Thermoplastic Journal Bearings;361
8.3;5.3 Hydrodynamics of Lubrication;362
8.4;5.4 Journal Bearings Design for Lubrication;365
8.5;5.5 Journal Bearing Design Principles;368
8.5.1;5.5.1 Journal Bearing Nomenclature and Equations;368
8.5.2;5.5.2 Thermoplastic Journal Bearing Axial Wall Thickness;370
8.5.3;5.5.3 Mounting Thermoplastic Journal Bearings;370
8.6;5.6 Split Bushing Thermoplastic Journal Bearings;371
8.7;5.7 Self-Centering Thermoplastic Journal Bearings;371
8.8;5.8 Journal Bearing Load Carrying Contact Surface (C);373
8.9;5.9 Load Reaction Across the Length of Thermoplastic Bearing;373
8.10;5.10 Injection Molded Journal Bearings Process Defects;374
8.11;5.11 Factors Affecting Journal Bearing Performance;375
8.12;5.12 Factors Affecting Journal Bearing Dimensions;376
8.12.1;5.12.1 Length-to-Inside Diameter Ratio of Journal Bearings;377
8.12.2;5.12.2 Types of Service and Motion of Journal Bearings;377
8.12.3;5.12.3 Thermoplastic Journal Bearing Annealing Effects;377
8.12.4;5.12.4 Acetal Homopolymer Moisture Absorption Effects;378
8.12.5;5.12.5 TFE and Nylon 6/6 Moisture Absorption Effects;378
8.12.6;5.12.6 Temperature Effects on Thermoplastic Journal Bearings;379
8.12.7;5.12.7 Thermal Effects on Thermoplastic Journal Bearing Clearances;380
8.13;5.13 Journal Bearing Pressure-Velocity (PV) Limits;381
8.13.1;5.13.1 Methods to Determine the PV Limits of Plastics;382
8.13.2;5.13.2 Journal Bearing Coefficient of Friction;382
8.13.3;5.13.3 Journal Bearing Failures Due to Small Clearances;383
8.13.4;5.13.4 Definition of Different Types of Wear;384
8.14;5.14 Mating Material Hardness and Surface Finishing;385
8.15;5.15 Self-Lubricated Thermoplastic Journal Bearings;386
8.15.1;5.15.1 Vespel® Polyimide Bearings;389
8.15.2;5.15.2 Journal Bearing Pressure Equation;390
8.15.3;5.15.3 Vespel® Wear Factor Effects Caused by Temperature;391
8.15.4;5.15.4 Vespel® Wear Transition Temperature;392
8.15.5;5.15.5 Frictional Behavior of Vespel®;392
8.15.6;5.15.6 Vespel® Journal Bearings Length to Inside Diameter Ratio;393
8.15.7;5.15.7 Vespel® Thrust Bearing Ratio Between Diameters;393
8.15.8;5.15.8 Vespel® Journal Bearing Initial Clearance (cI);393
8.15.9;5.15.9 Vespel® Journal Bearing Inside Diameter (dB);394
8.16;5.16 Teflon® (TFE) Fabric Composite Bearings;396
8.16.1;5.16.1 Bearing Physical Properties;397
8.16.2;5.16.2 Bearing PV Limit Rating;397
8.16.3;5.16.3 Journal Bearing Clearances (c);398
8.17;5.17 Thermoplastic Kevlar® Reinforced Bearings;398
9;6 Thermoplastic Molded Spring Design;400
9.1;6.1 Introduction;400
9.2;6.2 Thermoplastic Molded Spring Design Considerations;401
9.3;6.3 Thermoplastic Helical Compression Springs;401
9.4;6.4 Thermoplastic Molded Cantilever Beam Springs;402
9.5;6.5 Cantilever Beam Spring Design Analysis;404
9.5.1;6.5.1 Initial Modulus of Elasticity Cantilever Beam Analysis Method;404
9.5.2;6.5.2 Stress-Strain Curve Cantilever Beam Analysis Method;404
9.5.3;6.5.3 Empirical Data Cantilever Spring Analysis Method;405
9.6;6.6 Thermoplastic Cantilever Spring Applications;408
9.7;6.7 Thermoplastic Belleville Spring Washers;411
9.7.1;6.7.1 Acetal Homopolymer Belleville Spring Washer Analysis;412
9.7.2;6.7.2 Belleville Spring Washer Loading Rate;415
9.7.3;6.7.3 Belleville Spring Washer Long-Term Loading Characteristics;415
10;7 Thermoplastic Pressure Vessel Design;416
10.1;7.1 Thermoplastic Thin-Walled Pressure Vessels;416
10.2;7.2 Thin-Walled Cylinder Basic Principles;417
10.3;7.3 Thick-Walled Pressure Vessels;419
10.3.1;7.3.1 Lame’s Equation for Thick-Walled Cylinders;419
10.3.2;7.3.2 Maximum Stresses with Internal and External Pressures;421
10.3.3;7.3.3 Maximum Stresses for Internal Pressure Only;421
10.4;7.4 Designing Cylinders for Cost Reduction;423
10.5;7.5 Thermoplastic Pressure Vessels Design Guidelines;423
10.5.1;7.5.1 Preliminary Pressure Vessel Design;423
10.6;7.6 Testing Prototype Thermoplastic Pressure Vessels;425
10.6.1;7.6.1 Redesign and Retesting the Pressure Vessels;425
10.7;7.7 Pressure Vessel Regulations;425
10.7.1;7.7.1 ASME Pressure Vessel Code;426
11;8 Thermoplastic Assembly Methods;428
11.1;8.1 Introduction;428
11.2;8.2 Cold Heading Method;428
11.2.1;8.2.1 Cold Heading Procedure and Equipment;429
11.3;8.3 Electro Fusion Fitting System;431
11.3.1;8.3.1 The SEF-System;432
11.4;8.4 Hot Plate Welding Method;433
11.4.1;8.4.1 Hot Plate Welding Joint Design;435
11.4.2;8.4.2 Flash or Weld Bead;436
11.5;8.5 Solvent and Adhesive Bonding Methods;436
11.5.1;8.5.1 Solvents Used to Bond Thermoplastic Polymers;437
11.6;8.6 Adhesive Bonding Method;439
11.6.1;8.6.1 Adhesive Families;439
11.6.2;8.6.2 Adhesive Concerns;442
11.6.3;8.6.3 Adhesives Bonding Selection;443
11.6.4;8.6.4 Ultra Violet Curable Adhesives;444
11.6.5;8.6.5 Adhesive Surface Preparation;447
11.6.6;8.6.6 Adhesive Application and Curing Methods;448
11.6.7;8.6.7 Joint Design for Adhesive Bonding;448
11.7;8.7 Metal Fasteners Method;450
11.7.1;8.7.1 Thermoplastic Bosses and Self-Tapping Screws;452
11.7.2;8.7.2 Thread Forming and Thread Cutting Screws;453
11.8;8.8 Press Fitting Method;460
11.8.1;8.8.1 Press Fitting Interference;462
11.8.2;8.8.2 Circular Press Fitting Assembly Method;464
11.9;8.9 Snap Fitting Methods;467
11.9.1;8.9.1 Circular Undercut Snap Fitting Joints;468
11.9.2;8.9.2 Suggestions for Stripping Circular Undercut Snap Fitting;469
11.9.3;8.9.3 Cantilevered Latch Snap Fitting Joint;470
11.9.4;8.9.4 Cantilever Snap Fit Latch Design Guidelines;472
11.9.5;8.9.5 Cantilever Latch Snap Fit Mathematical Model;473
11.9.6;8.9.6 Cantilever Snap Latch Beam Permissible Deflection (?);475
11.9.7;8.9.7 Cantilever Latch Beam Assembly Force (W);476
11.9.8;8.9.8 Design and Material Considerations;477
11.9.9;8.9.9 Uniform Cross Section Cantilever Beam;477
11.9.10;8.9.10 Tapered Cross Section Cantilever Beam;478
11.10;8.10 Electromagnetic Welding Method;481
11.10.1;8.10.1 Electromagnetic Welding Process;482
11.10.2;8.10.2 Electromagnetic Welding Coil Design;483
11.10.3;8.10.3 Electromagnetic Welding Joint Design;486
11.10.4;8.10.4 Available Welding Gasket Shapes and Forms;487
11.11;8.11 Vibration Welding Method;488
11.11.1;8.11.1 High Frequency Vibration Welding;488
11.11.2;8.11.2 Vibration Welding Modes;489
11.11.3;8.11.3 Comparing Vibration Welding to Other Assembly Methods;492
11.11.4;8.11.4 Vibration Welding Equipment;494
11.11.5;8.11.5 Vibration Welding Joint Design;495
11.11.6;8.11.6 Vibration Welding Aligning and Fixturing;496
11.11.7;8.11.7 Vibration Welding Tolerances;497
11.11.8;8.11.8 Vibration Welding Equipment;497
11.12;8.12 Spin Welding Method;499
11.12.1;8.12.1 Applications;499
11.12.2;8.12.2 Basic Spin Welding Equipment;499
11.12.3;8.12.3 Spin Welding Variables;500
11.12.4;8.12.4 Types of Spin Welding Processes;500
11.12.5;8.12.5 Spin Welding Joint Designs;503
11.12.6;8.12.6 Spin Welding Process Suggestions;503
11.13;8.13 Ultrasonic Welding Method;505
11.13.1;8.13.1 Ultrasonic Welding Basic Principles;505
11.13.2;8.13.2 Ultrasonic Welding Basic Components;506
11.13.3;8.13.3 Ultrasonic Welding Equipment;506
11.13.4;8.13.4 Ultrasonic Welding Process Variables;510
11.13.5;8.13.5 Ultrasonic Welding Joint Designs;512
11.13.6;8.13.6 Ultrasonic Welding Energy Director Butt Joint;515
11.13.7;8.13.7 Ultrasonic Welding Method Design Limitations;517
11.13.8;8.13.8 Weldability of Thermoplastic Materials;519
11.13.9;8.13.9 Effects Caused by Thermoplastic Additives on Ultrasonic Welding;520
11.14;8.14 Ultrasonic Insertion;523
11.14.1;8.14.1 Applications;523
11.14.2;8.14.2 Ultrasonic Insertion Configurations;524
11.14.3;8.14.3 Ultrasonic Insertion Product Design;525
11.14.4;8.14.4 Ultrasonic Insertion Equipment Requirements;525
11.14.5;8.14.5 Ultrasonic Insertion Process Guidelines;526
11.15;8.15 Ultrasonic Stud Staking Method;526
11.15.1;8.15.1 Ultrasonic Stud Staking Joint Design;526
11.16;8.16 Ultrasonic Stud Heading Method;529
11.16.1;8.16.1 Thermoplastic Stud Profiles for Ultrasonic Heading;529
11.17;8.17 Ultrasonic Spot Welding Method;532
11.17.1;8.17.1 Hand-Held Ultrasonic Spot Welder;533
12;9 Thermoplastic Effects on Product Design;534
12.1;9.1 Polymer Melt Behavior;534
12.1.1;9.1.1 Thermoplastics Glass Transition Temperature;536
12.2;9.2 General Characteristics of Polymers;536
12.2.1;9.2.1 Critical Properties of Thermoplastics;537
12.3;9.3 Polymer Reinforcements;538
12.3.1;9.3.1 Types of Fiber Reinforcements;539
12.3.2;9.3.2 Isotropic Warpage of Fiber Reinforced Resins;540
12.3.3;9.3.3 Fiber Glass Reinforcement Limitations;540
12.3.4;9.3.4 Injection Molding Process Effects on Fiber Glass Orientation;540
12.3.5;9.3.5 Tensile Stress Effects Caused by Fiber Glass Orientation;541
12.3.6;9.3.6 Flexural Modulus Effects Caused by Fiber Glass Orientation;542
12.4;9.4 Chemical and Environmental Resistance;543
12.4.1;9.4.1 Effects of the Environment;544
12.5;9.5 Types of Degradations;545
12.5.1;9.5.1 Oxidative Degradation;545
12.5.2;9.5.2 Radiation Degradation;545
12.5.3;9.5.3 Photo Oxidation;545
12.5.4;9.5.4 Mechanical Degradation;545
12.5.5;9.5.5 Microbial Degradation;546
12.6;9.6 Moisture Effects on Nylon Molded Parts;546
12.7;9.7 Aqueous Potassium Acetate for Moisture Conditioning Nylon;550
12.8;9.8 Injection Molding Cycles;551
12.9;9.9 Mold Cavity Surface Temperature;552
12.10;9.10 Mold Cavity Temperature Control;553
12.10.1;9.10.1 Mold and Post-Mold Shrinkage;554
12.11;9.11 Process Condition Effects on Mold Shrinkage;556
12.12;9.12 Post-Mold Shrinkage;561
12.13;9.13 Weld Lines;564
13;10 Injection Mold Design;568
13.1;10.1 Classification of Injection Molds;568
13.2;10.2 Effects of Product Design on the Injection Molding Process;569
13.2.1;10.2.1 Uniform Wall Thickness;570
13.2.2;10.2.2 Balance Geometrical Configuration;570
13.2.3;10.2.3 Smooth Internal Sharp Corners;570
13.2.4;10.2.4 Draft Walls;570
13.2.5;10.2.5 Feather Edges;570
13.2.6;10.2.6 Proportional Boss Geometries;571
13.2.7;10.2.7 Gate Type and Location;571
13.2.8;10.2.8 Molded Product Ejection Surface Area;571
13.2.9;10.2.9 Molded Product Tolerances;571
13.2.10;10.2.10 Surface Finish of Molded Product;572
13.3;10.3 Effects of Mold Design on the Injection Molding Process;572
13.3.1;10.3.1 Runner System;572
13.3.2;10.3.2 Mold Cooling System;572
13.3.3;10.3.3 Ejector System;573
13.3.4;10.3.4 Mold Venting;573
13.3.5;10.3.5 Other Mold Devices;573
13.4;10.4 Design Considerations for Injection Molds;573
13.4.1;10.4.1 Preliminary Mold Design;574
13.4.2;10.4.2 Detailed Mold Design;575
13.5;10.5 Types of Steels Required for Injection Molds;576
13.5.1;10.5.1 Major Steel Families;576
13.6;10.6 Steels for Thermoplastic Injection Molds;580
13.6.1;10.6.1 General Steel Selection Procedures;581
13.6.2;10.6.2 Properties and Characteristics of Tool Steels;582
13.6.3;10.6.3 Effects of Alloying Elements on Tool Steel Properties;582
13.6.4;10.6.4 Chemical Composition of Steels Used for Molds;582
13.6.5;10.6.5 Effects of Alloying on Tool Steels;583
13.6.6;10.6.6 Effects of Heat Treatment on Tool Steel Properties;585
13.6.7;10.6.7 Prehardened Tool Steels;587
13.6.8;10.6.8 Carburizing Tool Steels;589
13.6.9;10.6.9 Oil and Air Hardening Tool Steels;590
13.6.10;10.6.10 Stainless Steels;591
13.6.11;10.6.11 Steels Used in Thermoplastic Injection Mold Components;592
13.7;10.7 Mold Cavity Surface Finishing;594
13.7.1;10.7.1 Mold Surface Finishing Process Procedures;596
13.8;10.8 Thermoplastic Injection Mold Bases;601
13.8.1;10.8.1 Standard Mold Base Components;601
13.8.2;10.8.2 Functions of the Mold Base Components;602
13.8.3;10.8.3 Types of Standard Mold Bases;605
13.9;10.9 Types of Thermoplastic Injection Molds;606
13.9.1;10.9.1 Two-Plate Molds;607
13.9.2;10.9.2 Round Mate® Interchangeable Insert Molds;608
13.9.3;10.9.3 Master Unit Die Interchangeable Insert Molds;608
13.9.4;10.9.4 Three-Plate Mold Cold Runner System;609
13.9.5;10.9.5 Vertical Insert Mold for Thermoplastic Encapsulations;610
13.9.6;10.9.6 Hot Runner Molding Systems;611
13.9.7;10.9.7 Hot Runner Mold Temperature Control Systems;612
13.9.8;10.9.8 Hot Runner Mold Gates (Drops);613
13.9.9;10.9.9 Types of Hot Runner Molding Systems;616
13.9.10;10.9.10 Thermoplastic Stack Injection Molds;624
13.9.11;10.9.11 Lost Core Thermoplastic Injection Molds;625
13.10;10.10 Number of Mold Cavities;629
13.10.1;10.10.1 Cavity Number Limitations;629
13.10.2;10.10.2 Number of Mold Cavities Equation;629
13.11;10.11 Mold Parting Line;630
13.11.1;10.11.1 Flat Mold Parting Line;630
13.11.2;10.11.2 Non-Flat Mold Parting Line;631
13.11.3;10.11.3 Balancing of Mold Parting Line Surfaces;633
13.12;10.12 Mold Ejection Systems;633
13.12.1;10.12.1 Ejector Plate Assembly;634
13.12.2;10.12.2 Ejector Plate;634
13.12.3;10.12.3 Retaining Plate;634
13.12.4;10.12.4 Ejector Sleeves;634
13.12.5;10.12.5 Types of Mold Ejection Systems;635
13.13;10.13 Injection Mold Cooling;638
13.13.1;10.13.1 Mold Temperature Control;639
13.13.2;10.13.2 Factors Affecting Mold Cooling;640
13.13.3;10.13.3 Effects Caused by Elevated Mold Temperature;640
13.13.4;10.13.4 Effects Caused by Too Low a Mold Temperature;641
13.13.5;10.13.5 Mold Heat Transfer Methods;641
13.13.6;10.13.6 Mold Cavity Insert Cooling;654
13.14;10.14 Injection Molding Machine Nozzle;662
13.14.1;10.14.1 Mold Cold Runner System;662
13.14.2;10.14.2 Determining the Injection Pressure Needed;676
13.14.3;10.14.3 Cold Runner Flow Tab;677
13.15;10.15 Mold Cavity Gating;678
13.15.1;10.15.1 Types of Mold Cavity Gates;679
13.15.2;10.15.2 Different Types of Hot Runner Gates;686
13.16;10.16 Gate Molding Effects;687
13.17;10.17 Mold Venting Systems;689
13.17.1;10.17.1 Product Design for Venting;690
13.17.2;10.17.2 Venting Characteristics of Thermoplastic Polymers;692
13.17.3;10.17.3 Mold Deposit Problems;692
13.17.4;10.17.4 How to Avoid Venting Problems;693
13.17.5;10.17.5 Planning Mold Venting;694
13.17.6;10.17.6 Mold Venting Process Problems;695
13.17.7;10.17.7 Mold Venting Design;697
13.17.8;10.17.8 Mold Venting Using Sintered Porous Insert Plugs;713
13.17.9;10.17.9 Logic Seal (Negative Coolant Pressure) Mold Venting;714
13.17.10;10.17.10 Mold Cavity Vacuum Venting System;716
13.18;10.18 Mold Cavity Insert Contact Area Strength;721
13.18.1;10.18.1 Cavity Insert Sidewall Strength;722
13.18.2;10.18.2 Methods to Calculate the Strength of Cavity Insert Sidewall;723
13.19;10.19 Mold Layout Case Studies;727
13.20;10.20 Mold Support Pillars;728
13.21;10.21 Tolerances for Thermoplastic Molded Parts;728
13.21.1;10.21.1 Factors Affecting Dimensional Control Tolerances;730
13.22;10.22 General Specifications for Mold Construction for Thermoplastic Injection Molding Resins;732
13.22.1;10.22.1 Mold Design Requirements;732
13.22.2;10.22.2 Mold Drawing Standards;732
13.22.3;10.22.3 Required Types of Tool Steels for Mold Construction;734
13.22.4;10.22.4 Mold Construction Requirements;736
13.23;10.23 Mold Tryout – Debug – Approvals – “MQ1” Requirements;743
13.23.1;10.23.1 Mold Tryout or Evaluation;743
13.23.2;10.23.2 Mold Debug Procedures;743
13.23.3;10.23.3 Approval of Molded Parts and Pre-Production Molding Process;743
13.23.4;10.23.4 Mold Cavity and Core Surface Temperatures;743
13.23.5;10.23.5 “MQ1” Requirements;744
14;11 Performance Testing of Thermoplastics;746
14.1;11.1 Property Data Sheet for Thermoplastics;747
14.2;11.2 Tensile Testing (ASTM D-638);748
14.2.1;11.2.1 Tensile Testing Equipment;748
14.2.2;11.2.2 Tensile Test Specimen;749
14.2.3;11.2.3 Specimen Conditioning;749
14.2.4;11.2.4 Tensile Strength Test Procedures;749
14.2.5;11.2.5 Tensile Modulus and Elongation;750
14.2.6;11.2.6 Molecular Orientation Effects;751
14.2.7;11.2.7 Crosshead Speed Effects;752
14.2.8;11.2.8 Temperature Effects;752
14.2.9;11.2.9 Moisture Absorption Effects;752
14.2.10;11.2.10 Stress-Strain Effects Caused by Creep;753
14.3;11.3 Flexural Testing (ASTM D-790);753
14.3.1;11.3.1 Apparatus;754
14.3.2;11.3.2 Test Procedures and Equations;755
14.3.3;11.3.3 Modulus of Elasticity;756
14.4;11.4 Compressive Strength Testing (ASTM D-695);756
14.4.1;11.4.1 Compressive Testing Apparatus;757
14.4.2;11.4.2 Test Specimens and Conditioning;757
14.4.3;11.4.3 Test Procedures;757
14.4.4;11.4.4 Stress-Strain Tension and Compression Curves;758
14.5;11.5 Shear Strength Testing (ASTM D-732);758
14.5.1;11.5.1 Test Specimen and Apparatus;758
14.5.2;11.5.2 Test Procedures;759
14.5.3;11.5.3 Significance and Limitations;759
14.6;11.6 Surface Hardness Testing;759
14.6.1;11.6.1 Rockwell Hardness Testing (ASTM D-785-60T);760
14.6.2;11.6.2 Barcol Hardness Testing (ASTM D-2583);762
14.6.3;11.6.3 Factors Affecting the Test Results;763
14.7;11.7 Abrasion Resistance Testing (ASTM D-1044);763
14.7.1;11.7.1 Taber Abrasion Testing;764
14.7.2;11.7.2 Theoretical Analysis of Wear;764
14.8;11.8 Coefficient of Friction (ASTM D-1894);765
14.8.1;11.8.1 Coefficient of Friction of Thermoplastic Materials;766
14.8.2;11.8.3 Effects of Lubricants;767
14.9;11.9 Mold Shrinkage Test (ASTM D-955);767
14.9.1;11.9.1 Purpose of the Mold Shrinkage Test;767
14.9.2;11.9.2 Factors Affecting Mold Shrinkage;768
14.9.3;11.9.3 Injection Molding Effects on Shrinkage;768
14.9.4;11.9.4 Requirements for Sampling;768
14.9.5;11.9.5 Test Procedures;769
14.10;11.10 Specific Gravity Testing (ASTM D-792);771
14.10.1;11.10.1 Test Procedures;772
14.11;11.11 Density Gradient Testing (ASTM D-1505);773
14.12;11.12 Water Absorption Testing (ASTM D-570);773
14.12.1;11.12.1 Test Specimen;774
14.12.2;11.12.2 Test Procedure;774
14.13;11.13 Impact Resistance Testing;774
14.13.1;11.13.1 Pendulum Impact Tests;776
14.13.2;11.13.2 Charpy Impact Testing (ASTM D-256);778
14.13.3;11.13.3 Chip Impact Testing;778
14.13.4;11.13.4 Tensile Impact Testing (ASTM D-1822);778
14.13.5;11.13.5 Drop Weight Impact Testing (ASTM D-3029);779
14.13.6;11.13.6 Falling Weight Impact Testing;780
14.13.7;11.13.7 Instrumented Impact Testing;781
14.14;11.14 Creep, Rupture, Relaxation, and Fatigue;784
14.14.1;11.14.1 Tensile Creep Testing;784
14.14.2;11.14.2 Flexural Creep Testing;785
14.14.3;11.14.3 Procedure for Applying Creep Modulus;787
14.15;11.15 Melting Point Test (ASTM D-795);790
14.16;11.16 Vicat Softening Point (ASTM D-1525);790
14.16.1;11.16.1 Melting Point, Glass Transition Temperature;791
14.17;11.17 Brittleness Temperature (ASTM D-746);791
14.17.1;11.17.1 Test Apparatus and Procedures;791
14.18;11.18 UL – Temperature Index;793
14.18.1;11.18.1 Relative Thermal Indices;793
14.18.2;11.18.2 Long Term Thermal Aging Index;795
14.18.3;11.18.3 Creep Modulus/Creep Rupture Tests;796
14.19;11.19 Heat Deflection Temperature (ASTM D-648);797
14.19.1;11.19.1 Apparatus and Test Specimens;797
14.19.2;11.19.2 Test Procedure;798
14.19.3;11.19.3 Test Variables and Limitations;798
14.20;11.20 Soldering Heat Resistance;798
14.21;11.21 Coefficient of Linear Thermal Expansion Testing;799
14.21.1;11.21.1 Test Procedure;800
14.22;11.22 Thermal Conductivity Testing (ASTM C-177);800
14.23;11.23 Melt Flow Testing;802
14.23.1;11.23.1 Moisture Content;803
14.24;11.24 Melt Index Testing (ASTM D-1238);803
14.24.1;11.24.1 Melt Flow Rate;804
14.25;11.25 Capillary Rheometer Melt Viscosity Testing (ASTM D-1703);805
14.25.1;11.25.1 Melt Viscosity vs. Shear Rate Curves;806
14.26;11.26 Electrical Properties Testing;807
14.26.1;11.26.1 Underwriter’s Laboratories (UL) Yellow Cards;808
14.26.2;11.26.2 How to Read and Interpret the “UL Yellow Card”;809
14.26.3;11.26.3 “UL Insulation Systems Recognition”;814
14.27;11.27 Electrical Insulation Properties;815
14.28;11.28 Electrical Resistance Properties;815
14.28.1;11.28.1 Volume Resistivity Testing (ASTM D-257);816
14.28.2;11.28.2 Surface Resistivity Testing (ASTM D-257);817
14.28.3;11.28.3 Dielectric Strength Testing (ASTM D-149);818
14.28.4;11.28.4 Dielectric Constant Testing (ASTM D-150);820
14.28.5;11.28.5 Dissipation Factor Testing (ASTM D-150);823
14.28.6;11.28.6 Arc Resistance Testing (ASTM D-495);824
14.28.7;11.28.7 High Voltage Arc Tracking Rate (UL-746 A);826
14.28.8;11.28.8 Comparative Track Index Testing (ASTM D-3638/UL 746 A).;827
14.29;11.29 Self and Flash Ignition Temperature Testing (ASTM D-1929);828
14.29.1;11.29.1 Test Description;828
14.29.2;11.29.2 High Current Arc Ignition Testing (UL 746A);829
14.29.3;11.29.3 Hot Wire Coil Ignition Testing (UL 746A/ASTM D-3874);830
14.29.4;11.29.4 Hot Mandrel Testing;830
14.29.5;11.29.5 Glow Wire Testing;830
14.30;11.30 Flammability Characteristics of Polymers;832
14.30.1;11.30.1 Inherently Flame Retardant Polymers;833
14.30.2;11.30.2 Less Flame Retardant Polymers;833
14.30.3;11.30.3 Flammable Polymers;833
14.31;11.31 UL 94 Flammability Testing;834
14.31.1;11.31.1 Horizontal Burning Testing, UL 94HB;834
14.31.2;11.31.2 Vertical Burning Testing, UL 94-V0, UL 94-V1, UL 94-V2;835
14.31.3;11.31.3 Vertical Burning Testing, UL 94-5V, UL 94-5VA, UL 94-5VB;836
14.31.4;11.31.4 Factors Affecting UL 94 Flammability Testing;838
14.32;11.32 Limited Oxygen Index Testing (ASTM D-2863);838
14.32.1;11.32.1 Test Procedures;839
14.32.2;11.32.2 Factors Affecting the Test Results;839
14.33;11.33 Smoke Generation Testing;840
14.33.1;11.33.1 Smoke Density Testing (ASTM D-2843);840
14.34;11.34 Weathering Tests for Thermoplastic Materials;841
14.34.1;11.34.1 Weathering Creep Factors (Degradation);841
14.34.2;11.34.2 Ultraviolet (UV) Radiation;842
14.34.3;11.34.3 Temperature;842
14.34.4;11.34.4 Moisture;843
14.34.5;11.34.5 Oxidation;22
14.34.6;11.34.6 Micro-Organisms;843
14.35;11.35 Accelerated Weathering Testing (ASTM G 23);844
14.35.1;11.35.1 Exposure to Fluorescent UV Lamp, Condensation (ASTM G 53);844
14.35.2;11.35.2 Accelerated Weather Testing, Weather-Ometer®;845
14.35.3;11.35.3 Exposure to Carbon Arc Light and Water Testing (ASTM D-1499);846
14.35.4;11.35.4 Exposure to Xenon Arc Light and Water Testing (ASTM D-2565);848
14.35.5;11.35.5 Outdoor Weathering Testing of Thermoplastics (ASTM D-1435);850
14.36;11.36 Fungi Resistance Testing of Thermoplastics (ASTM G 21);851
14.37;11.37 Bacteria Resistance Testing of Thermoplastics (ASTM G 22);852
14.38;11.38 Fungi and Bacteria Outdoor Exposure Resistance Limitations;852
15;12 Thermoplastic Product Cost Analysis;854
15.1;12.1 Injection Molding Process;855
15.2;12.2 Molding Cycle Time;855
15.3;12.3 Material Handling (Regrinds);856
15.4;12.4 Capital Equipment;856
15.5;12.5 Injection Molding Machine Size;856
15.6;12.6 Injection Molding Machine Cost;859
15.7;12.7 Machine Installation and Safety Considerations;860
15.8;12.8 Auxiliary Equipment and Automation;860
15.9;12.9 Mold Cost;861
15.10;12.10 Molded Products Cost Analysis;864
15.10.1;12.10.1 Cost Analysis Basic Method;864
15.10.2;12.10.2 Cost Analysis Graph Method;865
15.10.3;12.10.3 Advanced Cost Analysis Method;866
15.11;12.11 Secondary Molding Operations;871
15.12;12.12 Additional Manufacturing Costs;871
16;Appendix;872
16.1;Acronyms for Polymeric Materials;872
16.2;Common Acronyms;873
16.3;Process Acronyms;874
16.4;Reinforcement and Filler Acronyms;874
16.5;Nomenclature;875
16.6;English and Metric Units Conversion Guide;876
17;Subject Index;878
18;About the Author;892



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.