E-Book, Englisch, 776 Seiten, Web PDF
Chance / Devault / Frauenfelder Tunneling in Biological Systems
1. Auflage 2013
ISBN: 978-1-4832-7134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Colloquium of the Johnson Research Foundation
E-Book, Englisch, 776 Seiten, Web PDF
ISBN: 978-1-4832-7134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Tunneling in Biological Systems focuses on the low temperature electron transport that reveals a quantum-mechanical effect called 'tunneling. This book discusses the tunneling in physical systems; detection of molecular vibrations with electron tunneling; chemical-rate theory of small-polaron hopping; and experimental approaches to electronic coupling in metal ion redox systems. The Faraday rotation and photoconductivity of photosynthetic structures at microwave frequencies; dynamics of electron transport in macromolecules; and electron transfer reactions in cytochrome oxidase are also elaborated. This text likewise covers the kinetic evidence for electron tunneling in solution; specificity and control in biological systems; molecular tunneling in heme proteins; and ligand binding. This publication is valuable to students and researchers interested in the physics of biological and medical problems.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Tunneling in Biological Systems;4
3;Copyright Page;5
4;Table of Contents;6
5;LIST OF CONTRIBUTORS;14
6;PREFACE;18
7;PART I: TUNNELING IN PHYSICAL SYSTEMS;22
7.1;CHAPTER 1. MY TUNNELING EXPERIENCES;22
7.1.1;I. INTRODUCTION;22
7.1.2;II. ELECTRON TUNNELING;24
7.1.3;III. CONCLUSION;27
7.2;CHAPTER 2. INTRODUCTORY COMMENTS;28
7.3;CHAPTER 3. TUNNELING IN PHYSICAL SYSTEMS;36
7.3.1;I. INTRODUCTION;36
7.3.2;II. ELECTRON TUNNELING IN SOLIDS;37
7.3.3;III. ATOMIC, MOLECULAR, AND IONIC TUNNELING;43
7.3.4;IV. SUMMARY;46
7.3.5;REFERENCES;46
7.3.6;DISCUSSION;47
7.4;CHAPTER 4. CONCEPTS IN QUANTUM MECHANICAL TUNNELING
IN SYSTEMS OF BIOLOGICAL AND CHEMICAL INTEREST;50
7.4.1;I. INTRODUCTION;50
7.4.2;II. LOCAL vs. DELOCALIZED ELECTRON STATES;52
7.4.3;III. ELASTIC TUNNELING;63
7.4.4;IV. INELASTIC TUNNELING;71
7.4.5;V. REVERSIBILITY: STRONG VS. WEAK COUPLING;76
7.4.6;VI. INFLUENCE OF MOLECULAR MOTIONS ON ELECTRON TRANSFER BETWEEN
LOCALIZED STATES;78
7.4.7;VII. REAL INTERMEDIATE STATES;80
7.4.8;VIII. SYNOPSIS;82
7.4.9;ACKNOWLEDGMENTS;83
7.4.10;REFERENCES;83
7.4.11;DISCUSSION;85
7.5;CHAPTER 5. DETECTION OF MOLECULAR VIBRATIONS WITH ELECTRON
TUNNELING;86
7.5.1;ACKNOWLEDGMENT;95
7.5.2;REFERENCES;95
7.6;CHAPTER 6. TUNNELING IN NETWORK MODELS OF MOLECULAR
CHAINS;96
7.6.1;I. INTRODUCTION;96
7.6.2;II. DENSITY OF STATES OF PERIODIC CRYSTALS;99
7.6.3;III. DEFECTS IN CRYSTALS;101
7.6.4;IV. TUNNELING IN MOLECULAR CHAINS;103
7.6.5;ACKNOWLEDGMENT;109
7.6.6;REFERENCES;109
7.7;CHAPTER 7. LOCALIZED AND DELOCALIZED TUNNELING STATES;110
7.7.1;REFERENCES;113
7.8;CHAPTER 8. GENERAL DISCUSSION: FORMULATIONS OF THEORY;114
7.8.1;REFERENCES;124
8;PART II: TUNNELING IN CHEMICAL SYSTEMS;126
8.1;CHAPTER 9. ELECTRON AND NUCLEAR TUNNELING IN
CHEMICAL AND BIOLOGICAL SYSTEMS;128
8.1.1;I. INTRODUCTION;128
8.1.2;II. THEORETICAL CONCEPTS;129
8.1.3;III. ELECTRON AND NUCLEAR TUNNELING RECOGNITION;135
8.1.4;IV. EXAMPLES
OF ELECTRON AND NUCLEAR TUNNELING;136
8.1.5;V. ELECTRON TRANSFER IN BIOLOGICAL SYSTEMS;138
8.1.6;VI. PROTON TRANSFER REACTIONS;142
8.1.7;REFERENCES;144
8.1.8;DISCUSSION;146
8.2;CHAPTER 10. CHEMICAL-RATE THEORY OF SMALL-POLARON HOPPING;148
8.2.1;REFERENCES;153
8.2.2;APPENDIX;154
8.2.3;DISCUSSION;156
8.3;CHAPTER 11. A GENERAL THEORETICAL APPROACH TO TUNNELING TRANSFER AND
DISSOCIATION;158
8.3.1;REFERENCES;163
8.4;CHAPTER 12. A QUANTUM THEORY OF LOW-TEMPERATURE CHEMICAL AND BIOLOGICAL RATE PROCESSES IN CONDENSED MEDIA;164
8.4.1;I. INTRODUCTION;164
8.4.2;II. THEORY OF ELEMENTARY RATE PROCESSES IN CONDENSED MEDIA;168
8.4.3;III· RESULTS OF MODEL CALCULATIONS;172
8.4.4;IV. DISCUSSION AND COMPARISON WITH EXPERIMENTAL DATA;181
8.4.5;REFERENCES;189
8.5;CHAPTER 13. EXPERIMENTAL APPROACHES TO ELECTRONIC COUPLING IN METAL ION REDOX SYSTEMS;192
8.5.1;I. INTRODUCTION;193
8.5.2;INTRAMOLECULAR ELECTRON TRANSFER;198
8.5.3;MIXED VALENCE MOLECULES;206
8.5.4;GENERAL COMMENTS;214
8.5.5;REFERENCES;215
8.5.6;DISCUSSION;217
8.6;CHAPTER 14. ELECTRON TRANSFER REACTIONS OF METAL COMPLEXES IN SOLUTION;220
8.6.1;I. ELECTRON EXCHANGE REACTIONS;220
8.6.2;II. ELECTRON TRANSFER ACCOMPANIED BY A NET CHEMICAL CHANGE;238
8.6.3;IV. CONCLUSIONS;241
8.6.4;ACKNOWLEDGMENTS;242
8.6.5;REFERENCES;242
8.6.6;DISCUSSION;244
8.7;CHAPTER 15. ELECTRON TRANSFER PROPERTIES OF THE IMIDAZOLATE ANION;248
8.7.1;I. INTRODUCTION;248
8.7.2;II. EXPERIMENTAL;249
8.7.3;III. RESULTS AND DISCUSSION;251
8.7.4;III. CONCLUSIONS;255
8.7.5;REFERENCES;255
8.8;CHAPTER 16.
ELECTRON TRANSFER IN (NH3) 5Ru(III)-4-ALKYLPRIDINE- Cu (I) BINUCLEAR IONS;256
8.8.1;REFERENCES;260
8.9;CHAPTER 17. ELECTRON TUNNELING AFTER RADIOLYSIS;262
8.9.1;I. INTRODUCTION;262
8.9.2;II. GEMINATE RECOMBINATION IN SOLIDS;267
8.9.3;III. TRANSFER OF ELECTRONS TO ADDED SCAVENGERS IN SOLIDS;270
8.9.4;IV. THEORETICAL PROBLEMS;274
8.9.5;V. OTHER ROLES FOR TUNNELING;279
8.9.6;VI. SPIN LIMITATIONS ON ELECTRON TRANSFER;280
8.9.7;VII. CONCLUSION;282
8.9.8;ACKNOWLEDGMENTS;282
8.9.9;APPENDIX;282
8.9.10;DISCUSSION;286
8.9.11;REFERENCES;284
8.10;CHAPTER 18. TUNNELING DISTANCES AND EXOTHERMIC RATE
RESTRICTIONS IN ELECTRON TRANSFER RE ACTIONS;288
8.10.1;I. INTRODUCTION;288
8.10.2;II. EXPERIMENTAL TECHNIQUES;289
8.10.3;III. EXPERIMENTAL RESULTS;290
8.10.4;IV. COMPARISON WITH THEORY;296
8.10.5;V. CONCLUSIONS;297
8.10.6;REFERENCES;298
8.11;CHAPTER 19. GENERAL DISCUSSION: ELECTRON VS. NUCLEAR TUNNELING;300
8.11.1;REFERENCES;313
8.12;CHAPTER 20. GENERAL DISCUSSION: ADIABATICITY;314
8.12.1;REFERENCES;318
9;PART III: TUNNELING IN BIOLOGICAL SYSTEMS;320
9.1;CHAPTER 21. INTRODUCTION TO BIOLOGICAL ASPECTS;322
9.1.1;REFERENCES;334
10;PART IV: TUNNELING IN PHOTOSYNTHETIC SYSTEMS;336
10.1;CHAPTER 22. CYTOCHROME-RE ACTION CENTER-QUINONEINTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON
TRANSFER;338
10.1.1;I. INTRODUCTION;338
10.1.2;II. THE FUNCTIONAL PARTS OF THE REACTION CENTER;342
10.1.3;III. SOME PHYSICAL-CHEMICAL INFORMATION ABOUT THE REDOX CENTERS;344
10.1.4;IV. THE EQUILIBRIUM Em VALUES OF THE REDOX CENTERS OF THE
DIFFERENT BACTERIAL SPECIES;348
10.1.5;V. BASIC PATHWAYS IN THE REACTION CENTER, AND THEIR KINETICS
BETWEEN 300° AND 4°K;349
10.1.6;VI. STRATEGY FOR DETERMINATION OF DISTANCES, ANGLES AND MAGNETIC
COUPLING IN THE REACTION CENTER-CYTOCHROME c COMPLEX;351
10.1.7;VII. STRUCTURAL ORGANIZATION AND INTERACTION BETWEEN THE ELECTRON
CARRIERS OF THE REACTION CENTER;351
10.1.8;VIII. FACTORS WHICH MAY BE IMPORTANT TO THE GOVERNANCE OF ELECTRON
TRANSFER RATES;358
10.1.9;IX. CONCLUSIONS;368
10.1.10;REFERENCES;369
10.1.11;DISCUSSION;372
10.2;CHAPTER 23. ELECTRON TRANSFER BETWEEN c- TYPE
CYTOCHROMES AND HIGH POTENTIAL IRON-SULFUR PROTEINS;374
10.2.1;I. INTRODUCTION;375
10.2.2;II. METHODS;375
10.2.3;III. RESULTS;376
10.2.4;IV. CONCLUSIONS;379
10.2.5;REFERENCES;380
10.3;CHAPTER 24. AN APPLICATION OF ELECTRON TRANSFER THEORY
TO A PROBLEM IN CHLOROPLAST MEMBRANETOPOGRAPHY;382
10.3.1;I. INTRODUCTION;382
10.3.2;II. RESULTS AND DISCUSSION;383
10.3.3;ACKNOWLEDGMENTS;388
10.3.4;REFERENCES;389
10.4;CHAPTER 25. ELECTRON TUNNELING IN PHOTOSYSTEM-I CHARGER ECOMBINATION AT LOW TEMPERATURES;390
10.4.1;REFERENCES;395
10.5;CHAPTER 26.SOME DATA OF POSSIBLE RELEVANCE TO TUNNELING IN PHOTOSYNTHETIC
REACTION CENTERS;396
10.5.1;I. INTRODUCTION;396
10.5.2;II. FLUORESCENCE AND PHOTOCHEMISTRY IN PHOTOSYNTHETIC REACTIONCENTERS;396
10.5.3;III. DEHYDRATION OF PHOTOSYNTHETIC REACTION CENTERS;398
10.5.4;IV. REACTION CENTERS UNDER HIGH PRESSURE;401
10.5.5;REFERENCES;402
10.5.6;DISCUSSION;402
10.6;CHAPTER 27. THE EFFECTS OF HIGH HYDROSTATIC PRESSURE ON LIGHT-INDUCED ELECTRON TRANSFER AND PROTON
BINDING IN CHROMATIUM;406
10.6.1;I. INTRODUCTION;406
10.6.2;II. MATERIALS AND METHODS;408
10.6.3;III. RESULTS;409
10.6.4;IV. DISCUSSION;418
10.6.5;REFERENCES;421
10.6.6;DISCUSSION;422
10.7;CHAPTER 28. FARADAY ROTATION AND PHOTOCONDUCTIVITY OF PHOTOSYNTHETIC STRUCTURES
AT MICROWAVE FREQUENCIES;424
10.7.1;I. INTRODUCTION;425
10.7.2;II. MATERIALS AND METHODS;426
10.7.3;III. RESULTS AND DISCUSSION;429
10.7.4;REFERENCES;434
10.8;CHAPTER 29.
NONADIABATIC ELECTRON TUNNELING:IMPLICATIONS FOR BACTERIAL PHOTOSYNTHESIS AND FOR CRITICAL PHYSICAL TESTS OF THE MECHANISM;436
10.8.1;REFERENCES;449
10.8.2;DISCUSSION;450
10.9;CHAPTER 30. DYNAMICS OF ELECTRON TRANSPORT IN MACROMOLECULES;452
10.9.1;REFERENCES;457
10.10;CHAPTER 31. GENERAL DISCUSSION: TEMPERATURE DEPENDENCE;458
10.10.1;REFERENCES;469
11;PART V: TUNNELING IN THE RESPIRATORY CHAIN;470
11.1;CHAPTER 32. MITOCHONDRIAL ELECTRON TRANSFER AT PHOSPHORYLATION SITES 2 AND 3;472
11.1.1;I. THE NATURE OF THE MITOCHONDRIAL RESPIRATORY CHAIN:
OUTLINE OF A PROBLEM;472
11.1.2;II. PHOSPHORYLATION SITES 2 AND
3;474
11.1.3;III. THE MITOCHONDRIAL RESPIRATORY CHAIN;479
11.1.4;ACKNOWLEDGMENTS;487
11.1.5;REFERENCES;487
11.1.6;DISCUSSION;490
11.2;CHAPTER 33. ELECTRON TRANSPORT IN THE SUCCINATE-UBIQUINONE SEGMENT OF THE RESPIRATORY CHAIN;492
11.2.1;DISCUSSION;499
11.2.2;ACKNOWLEDGMENTS;500
11.2.3;REFERENCES;500
11.3;CHAPTER 34. ELECTRON TRANSFER REACTIONS IN CYTOCHROME OXIDASE;502
11.3.1;I. INTRODUCTION;502
11.3.2;II. THE METHODS OF STUDY;503
11.3.3;III. THE CYTOCHROME OXIDASE MOLECULE: A MEMBRANE PROTEIN;506
11.3.4;IV. SPECIFICITY;511
11.3.5;V. KINETICS AND SEQUENCE OF REACTIONS;512
11.3.6;VI. CONTROL;521
11.3.7;VI. TUNNELING IN THE RESPIRATORY CHAIN;524
11.3.8;VII. SUMMARY;527
11.3.9;REFERENCES;528
11.3.10;DISCUSSION;530
11.4;CHAPTER 35. DEFINITION OF THE SURFACE OF CYTOCHROME c INTERACTING WITH CYTOCHROME OXIDASE;532
11.4.1;I. RESULTS;534
11.4.2;REFERENCES;539
11.5;CHAPTER 36. STRUCTURE/FUNCTION RELATIONSHIPS IN BIOLOGICAL ELECTRON TRANSPORT PROTEINS;542
11.5.1;I. INTRODUCTION;542
11.5.2;II. ELECTRON TRANSPORT PROTEIN STRUCTURES;545
11.5.3;III. MECHANISMS;555
11.5.4;ACKNOWLEDGMENTS;559
11.5.5;REFERENCES;559
11.5.6;DISCUSSION;560
11.6;CHAPTER 37. GENERAL DISCUSSION: CYTOCHROME c AND SOME OTHER BIOLOGICAL REDOX MOLECULES;562
11.6.1;REFERENCES;576
12;PART VI: TUNNELING IN MODEL BIOLOGICAL SYSTEMS;578
12.1;CHAPTER 38. CONFORMATIONAL DISTRIBUTION AND VIBRONIC COUPLING IN THE BLUE COPPER-CONTAINING PROTEIN AZURIN;580
12.1.1;ACKNOWLEDGMENTS;586
12.1.2;REFERENCES;586
12.2;CHAPTER 39. OVERALL CHARGE CONTROL OF THE IONIC STRENGTH EFFECTS UPON THE REDOX KINETICS OF SMALL MOLECULE-PROTEIN AND PROTEIN-PROTEIN REACTIONS;588
12.2.1;REFERENCES;592
12.3;CHAPTER 40. THE ENERGY TRANSFORMING FUNCTION ASSOCIATED WITH ELECTRON TRANSFER REACTIONS IN BIOLOGICAL SYSTEMS;594
12.3.1;I. INTRODUCTION;594
12.3.2;II. THE ENERGY COUPLING;595
12.3.3;III. DISCUSSION;598
12.3.4;REFERENCES;599
12.4;CHAPTER 41. KINETIC EVIDENCE FOR ELECTRON TUNNELING IN SOLUTION;600
12.4.1;I. INTRODUCTION;600
12.4.2;EXPERIMENTAL METHODS;601
12.4.3;RESULTS;602
12.4.4;CONCLUSIONS;605
12.4.5;ACKNOWLEDGMENT;605
12.4.6;REFERENCES;606
12.5;CHAPTER 42. FERMI-LEVEL MATCHING: A POSSIBLE CONDITION IN REDOX ENZYME SPECIFICITY;608
12.5.1;REFERENCES;612
12.6;CHAPTER 43. GENERAL DISCUSSION: DISTANCES;614
12.6.1;REFERENCES;622
12.7;CHAPTER 44. SPECIFICITY AND CONTROL IN BIOLOGICAL SYSTEMS;624
12.7.1;REFERENCES;626
12.8;CHAPTER 45. GENERAL DISCUSSION: BIOLOGICAL SPECIFICITY AND CONTROL;628
12.8.1;REFERENCES;642
13;PART VII: MOLECULAR TUNNELING;644
13.1;CHAPTER 46. MOLECULAR TUNNELING IN HEME PROTEINS;646
13.1.1;I. MOLECULAR TUNNELING;646
13.1.2;II THE ACTIVE CENTER OF HEME PROTEINS;649
13.1.3;III. EXPERIMENTAL;651
13.1.4;IV CONFORMATIONAL STATES;656
13.1.5;V. EVALUATION OF TUNNELING DATA;658
13.1.6;VI. RESULTS AND OUTLOOK;662
13.1.7;ACKNOWLEDGMENTS;663
13.1.8;REFERENCES;664
13.1.9;DISCUSSION;665
13.2;CHAPTER 47. HEME LIGAND CONFIGURATION IN PHOTODISSOCIABLE FERROUS MYOGLOBIN COMPLEXES;670
13.2.1;ACKNOWLEDGMENT;677
13.2.2;REFERENCES;678
13.2.3;DISCUSSION;678
13.3;CHAPTER 48. GENERAL DISCUSSION: LIGAND BINDING;680
13.4;CHAPTER 49. QUANTUM CHEMICAL REACTIVITY NEAR ABSOLUTE ZERO: BIOLOGICAL, CHEMICAL, AND ASTROPHYSICAL ASPECTS;682
13.4.1;I. INTRODUCTION;682
13.4.2;II. THE LOW TEMPERATURE LIMIT OF CHEMICAL REACTION RATES
IN THE POLYMERIZATION OF FORMALDEHYDE;684
13.4.3;III. CHEMICAL REACTIONS AS RADIATIONLESS ELECTRON TRANSITIONS;692
13.4.4;IV. OTHER EXAMPLES OF APPARENT MOLECULAR TUNNELING IN CHEMICAL REACTIONS;710
13.4.5;V. ASTROPHYSICAL ASPECTS OF NON-ARRHENIUS KINETICS OF CHEMICAL REACTIONS: INTERSTELLAR DUST GRAINS AS POSSIBLE COLD SEEDS
OF LIFE;716
13.4.6;REFERENCES;723
13.4.7;DISCUSSION;726
14;PART VIII: EXPERIMENTAL APPROACHES;732
14.1;CHAPTER 50. NEW METHODS FOR EXPLORING TUNNELING PHENOMENA;734
14.1.1;REFERENCES;737
14.1.2;DISCUSSION;738
14.2;CHAPTER 51. GENERAL DISCUSSION: EXPERIMENTAL TECHNIQUES;740
14.2.1;REFERENCES;747
14.3;CHAPTER 52. MAGNETIC INTERACTIONS AND ELECTRON TRANSFER KINETICS OF THE REDUCED INTERMEDIATE ACCEPTOR IN REACTION CENTERS(RCs) OF RHODOPSEUDOMONAS SPHAEROIDES R-26. EVIDENCE FOR THERMALLY INDUCED TUNNELING;748
14.3.1;I. INTRODUCTION;748
14.3.2;II. EXPERIMENTAL;750
14.3.3;III.
THEORY;753
14.3.4;IV. COMPARISON BETWEEN THEORY AND EXPERIMENT;760
14.3.5;V. DISCUSSION AND CONCLUSION;760
14.3.6;REFERENCES;762
15;SUBJECT INDEX;764