Chance / Devault / Frauenfelder | Tunneling in Biological Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 776 Seiten, Web PDF

Chance / Devault / Frauenfelder Tunneling in Biological Systems

A Colloquium of the Johnson Research Foundation
1. Auflage 2013
ISBN: 978-1-4832-7134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Colloquium of the Johnson Research Foundation

E-Book, Englisch, 776 Seiten, Web PDF

ISBN: 978-1-4832-7134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Tunneling in Biological Systems focuses on the low temperature electron transport that reveals a quantum-mechanical effect called 'tunneling. This book discusses the tunneling in physical systems; detection of molecular vibrations with electron tunneling; chemical-rate theory of small-polaron hopping; and experimental approaches to electronic coupling in metal ion redox systems. The Faraday rotation and photoconductivity of photosynthetic structures at microwave frequencies; dynamics of electron transport in macromolecules; and electron transfer reactions in cytochrome oxidase are also elaborated. This text likewise covers the kinetic evidence for electron tunneling in solution; specificity and control in biological systems; molecular tunneling in heme proteins; and ligand binding. This publication is valuable to students and researchers interested in the physics of biological and medical problems.

Chance / Devault / Frauenfelder Tunneling in Biological Systems jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Tunneling in Biological Systems;4
3;Copyright Page;5
4;Table of Contents;6
5;LIST OF CONTRIBUTORS;14
6;PREFACE;18
7;PART I: TUNNELING IN PHYSICAL SYSTEMS;22
7.1;CHAPTER 1. MY TUNNELING EXPERIENCES;22
7.1.1;I. INTRODUCTION;22
7.1.2;II. ELECTRON TUNNELING;24
7.1.3;III. CONCLUSION;27
7.2;CHAPTER 2. INTRODUCTORY COMMENTS;28
7.3;CHAPTER 3. TUNNELING IN PHYSICAL SYSTEMS;36
7.3.1;I. INTRODUCTION;36
7.3.2;II. ELECTRON TUNNELING IN SOLIDS;37
7.3.3;III. ATOMIC, MOLECULAR, AND IONIC TUNNELING;43
7.3.4;IV. SUMMARY;46
7.3.5;REFERENCES;46
7.3.6;DISCUSSION;47
7.4;CHAPTER 4. CONCEPTS IN QUANTUM MECHANICAL TUNNELING
IN SYSTEMS OF BIOLOGICAL AND CHEMICAL INTEREST;50
7.4.1;I. INTRODUCTION;50
7.4.2;II. LOCAL vs. DELOCALIZED ELECTRON STATES;52
7.4.3;III. ELASTIC TUNNELING;63
7.4.4;IV. INELASTIC TUNNELING;71
7.4.5;V. REVERSIBILITY: STRONG VS. WEAK COUPLING;76
7.4.6;VI. INFLUENCE OF MOLECULAR MOTIONS ON ELECTRON TRANSFER BETWEEN
LOCALIZED STATES;78
7.4.7;VII. REAL INTERMEDIATE STATES;80
7.4.8;VIII. SYNOPSIS;82
7.4.9;ACKNOWLEDGMENTS;83
7.4.10;REFERENCES;83
7.4.11;DISCUSSION;85
7.5;CHAPTER 5. DETECTION OF MOLECULAR VIBRATIONS WITH ELECTRON
TUNNELING;86
7.5.1;ACKNOWLEDGMENT;95
7.5.2;REFERENCES;95
7.6;CHAPTER 6. TUNNELING IN NETWORK MODELS OF MOLECULAR
CHAINS;96
7.6.1;I. INTRODUCTION;96
7.6.2;II. DENSITY OF STATES OF PERIODIC CRYSTALS;99
7.6.3;III. DEFECTS IN CRYSTALS;101
7.6.4;IV. TUNNELING IN MOLECULAR CHAINS;103
7.6.5;ACKNOWLEDGMENT;109
7.6.6;REFERENCES;109
7.7;CHAPTER 7. LOCALIZED AND DELOCALIZED TUNNELING STATES;110
7.7.1;REFERENCES;113
7.8;CHAPTER 8. GENERAL DISCUSSION: FORMULATIONS OF THEORY;114
7.8.1;REFERENCES;124
8;PART II: TUNNELING IN CHEMICAL SYSTEMS;126
8.1;CHAPTER 9. ELECTRON AND NUCLEAR TUNNELING IN
CHEMICAL AND BIOLOGICAL SYSTEMS;128
8.1.1;I. INTRODUCTION;128
8.1.2;II. THEORETICAL CONCEPTS;129
8.1.3;III. ELECTRON AND NUCLEAR TUNNELING RECOGNITION;135
8.1.4;IV. EXAMPLES
OF ELECTRON AND NUCLEAR TUNNELING;136
8.1.5;V. ELECTRON TRANSFER IN BIOLOGICAL SYSTEMS;138
8.1.6;VI. PROTON TRANSFER REACTIONS;142
8.1.7;REFERENCES;144
8.1.8;DISCUSSION;146
8.2;CHAPTER 10. CHEMICAL-RATE THEORY OF SMALL-POLARON HOPPING;148
8.2.1;REFERENCES;153
8.2.2;APPENDIX;154
8.2.3;DISCUSSION;156
8.3;CHAPTER 11. A GENERAL THEORETICAL APPROACH TO TUNNELING TRANSFER AND
DISSOCIATION;158
8.3.1;REFERENCES;163
8.4;CHAPTER 12. A QUANTUM THEORY OF LOW-TEMPERATURE CHEMICAL AND BIOLOGICAL RATE PROCESSES IN CONDENSED MEDIA;164
8.4.1;I. INTRODUCTION;164
8.4.2;II. THEORY OF ELEMENTARY RATE PROCESSES IN CONDENSED MEDIA;168
8.4.3;III· RESULTS OF MODEL CALCULATIONS;172
8.4.4;IV. DISCUSSION AND COMPARISON WITH EXPERIMENTAL DATA;181
8.4.5;REFERENCES;189
8.5;CHAPTER 13. EXPERIMENTAL APPROACHES TO ELECTRONIC COUPLING IN METAL ION REDOX SYSTEMS;192
8.5.1;I. INTRODUCTION;193
8.5.2;INTRAMOLECULAR ELECTRON TRANSFER;198
8.5.3;MIXED VALENCE MOLECULES;206
8.5.4;GENERAL COMMENTS;214
8.5.5;REFERENCES;215
8.5.6;DISCUSSION;217
8.6;CHAPTER 14. ELECTRON TRANSFER REACTIONS OF METAL COMPLEXES IN SOLUTION;220
8.6.1;I. ELECTRON EXCHANGE REACTIONS;220
8.6.2;II. ELECTRON TRANSFER ACCOMPANIED BY A NET CHEMICAL CHANGE;238
8.6.3;IV. CONCLUSIONS;241
8.6.4;ACKNOWLEDGMENTS;242
8.6.5;REFERENCES;242
8.6.6;DISCUSSION;244
8.7;CHAPTER 15. ELECTRON TRANSFER PROPERTIES OF THE IMIDAZOLATE ANION;248
8.7.1;I. INTRODUCTION;248
8.7.2;II. EXPERIMENTAL;249
8.7.3;III. RESULTS AND DISCUSSION;251
8.7.4;III. CONCLUSIONS;255
8.7.5;REFERENCES;255
8.8;CHAPTER 16.
ELECTRON TRANSFER IN (NH3) 5Ru(III)-4-ALKYLPRIDINE- Cu (I) BINUCLEAR IONS;256
8.8.1;REFERENCES;260
8.9;CHAPTER 17. ELECTRON TUNNELING AFTER RADIOLYSIS;262
8.9.1;I. INTRODUCTION;262
8.9.2;II. GEMINATE RECOMBINATION IN SOLIDS;267
8.9.3;III. TRANSFER OF ELECTRONS TO ADDED SCAVENGERS IN SOLIDS;270
8.9.4;IV. THEORETICAL PROBLEMS;274
8.9.5;V. OTHER ROLES FOR TUNNELING;279
8.9.6;VI. SPIN LIMITATIONS ON ELECTRON TRANSFER;280
8.9.7;VII. CONCLUSION;282
8.9.8;ACKNOWLEDGMENTS;282
8.9.9;APPENDIX;282
8.9.10;DISCUSSION;286
8.9.11;REFERENCES;284
8.10;CHAPTER 18. TUNNELING DISTANCES AND EXOTHERMIC RATE
RESTRICTIONS IN ELECTRON TRANSFER RE ACTIONS;288
8.10.1;I. INTRODUCTION;288
8.10.2;II. EXPERIMENTAL TECHNIQUES;289
8.10.3;III. EXPERIMENTAL RESULTS;290
8.10.4;IV. COMPARISON WITH THEORY;296
8.10.5;V. CONCLUSIONS;297
8.10.6;REFERENCES;298
8.11;CHAPTER 19. GENERAL DISCUSSION: ELECTRON VS. NUCLEAR TUNNELING;300
8.11.1;REFERENCES;313
8.12;CHAPTER 20. GENERAL DISCUSSION: ADIABATICITY;314
8.12.1;REFERENCES;318
9;PART III: TUNNELING IN BIOLOGICAL SYSTEMS;320
9.1;CHAPTER 21. INTRODUCTION TO BIOLOGICAL ASPECTS;322
9.1.1;REFERENCES;334
10;PART IV: TUNNELING IN PHOTOSYNTHETIC SYSTEMS;336
10.1;CHAPTER 22. CYTOCHROME-RE ACTION CENTER-QUINONEINTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON
TRANSFER;338
10.1.1;I. INTRODUCTION;338
10.1.2;II. THE FUNCTIONAL PARTS OF THE REACTION CENTER;342
10.1.3;III. SOME PHYSICAL-CHEMICAL INFORMATION ABOUT THE REDOX CENTERS;344
10.1.4;IV. THE EQUILIBRIUM Em VALUES OF THE REDOX CENTERS OF THE
DIFFERENT BACTERIAL SPECIES;348
10.1.5;V. BASIC PATHWAYS IN THE REACTION CENTER, AND THEIR KINETICS
BETWEEN 300° AND 4°K;349
10.1.6;VI. STRATEGY FOR DETERMINATION OF DISTANCES, ANGLES AND MAGNETIC
COUPLING IN THE REACTION CENTER-CYTOCHROME c COMPLEX;351
10.1.7;VII. STRUCTURAL ORGANIZATION AND INTERACTION BETWEEN THE ELECTRON
CARRIERS OF THE REACTION CENTER;351
10.1.8;VIII. FACTORS WHICH MAY BE IMPORTANT TO THE GOVERNANCE OF ELECTRON
TRANSFER RATES;358
10.1.9;IX. CONCLUSIONS;368
10.1.10;REFERENCES;369
10.1.11;DISCUSSION;372
10.2;CHAPTER 23. ELECTRON TRANSFER BETWEEN c- TYPE
CYTOCHROMES AND HIGH POTENTIAL IRON-SULFUR PROTEINS;374
10.2.1;I. INTRODUCTION;375
10.2.2;II. METHODS;375
10.2.3;III. RESULTS;376
10.2.4;IV. CONCLUSIONS;379
10.2.5;REFERENCES;380
10.3;CHAPTER 24. AN APPLICATION OF ELECTRON TRANSFER THEORY
TO A PROBLEM IN CHLOROPLAST MEMBRANETOPOGRAPHY;382
10.3.1;I. INTRODUCTION;382
10.3.2;II. RESULTS AND DISCUSSION;383
10.3.3;ACKNOWLEDGMENTS;388
10.3.4;REFERENCES;389
10.4;CHAPTER 25. ELECTRON TUNNELING IN PHOTOSYSTEM-I CHARGER ECOMBINATION AT LOW TEMPERATURES;390
10.4.1;REFERENCES;395
10.5;CHAPTER 26.SOME DATA OF POSSIBLE RELEVANCE TO TUNNELING IN PHOTOSYNTHETIC
REACTION CENTERS;396
10.5.1;I. INTRODUCTION;396
10.5.2;II. FLUORESCENCE AND PHOTOCHEMISTRY IN PHOTOSYNTHETIC REACTIONCENTERS;396
10.5.3;III. DEHYDRATION OF PHOTOSYNTHETIC REACTION CENTERS;398
10.5.4;IV. REACTION CENTERS UNDER HIGH PRESSURE;401
10.5.5;REFERENCES;402
10.5.6;DISCUSSION;402
10.6;CHAPTER 27. THE EFFECTS OF HIGH HYDROSTATIC PRESSURE ON LIGHT-INDUCED ELECTRON TRANSFER AND PROTON
BINDING IN CHROMATIUM;406
10.6.1;I. INTRODUCTION;406
10.6.2;II. MATERIALS AND METHODS;408
10.6.3;III. RESULTS;409
10.6.4;IV. DISCUSSION;418
10.6.5;REFERENCES;421
10.6.6;DISCUSSION;422
10.7;CHAPTER 28. FARADAY ROTATION AND PHOTOCONDUCTIVITY OF PHOTOSYNTHETIC STRUCTURES
AT MICROWAVE FREQUENCIES;424
10.7.1;I. INTRODUCTION;425
10.7.2;II. MATERIALS AND METHODS;426
10.7.3;III. RESULTS AND DISCUSSION;429
10.7.4;REFERENCES;434
10.8;CHAPTER 29.
NONADIABATIC ELECTRON TUNNELING:IMPLICATIONS FOR BACTERIAL PHOTOSYNTHESIS AND FOR CRITICAL PHYSICAL TESTS OF THE MECHANISM;436
10.8.1;REFERENCES;449
10.8.2;DISCUSSION;450
10.9;CHAPTER 30. DYNAMICS OF ELECTRON TRANSPORT IN MACROMOLECULES;452
10.9.1;REFERENCES;457
10.10;CHAPTER 31. GENERAL DISCUSSION: TEMPERATURE DEPENDENCE;458
10.10.1;REFERENCES;469
11;PART V: TUNNELING IN THE RESPIRATORY CHAIN;470
11.1;CHAPTER 32. MITOCHONDRIAL ELECTRON TRANSFER AT PHOSPHORYLATION SITES 2 AND 3;472
11.1.1;I. THE NATURE OF THE MITOCHONDRIAL RESPIRATORY CHAIN:
OUTLINE OF A PROBLEM;472
11.1.2;II. PHOSPHORYLATION SITES 2 AND
3;474
11.1.3;III. THE MITOCHONDRIAL RESPIRATORY CHAIN;479
11.1.4;ACKNOWLEDGMENTS;487
11.1.5;REFERENCES;487
11.1.6;DISCUSSION;490
11.2;CHAPTER 33. ELECTRON TRANSPORT IN THE SUCCINATE-UBIQUINONE SEGMENT OF THE RESPIRATORY CHAIN;492
11.2.1;DISCUSSION;499
11.2.2;ACKNOWLEDGMENTS;500
11.2.3;REFERENCES;500
11.3;CHAPTER 34. ELECTRON TRANSFER REACTIONS IN CYTOCHROME OXIDASE;502
11.3.1;I. INTRODUCTION;502
11.3.2;II. THE METHODS OF STUDY;503
11.3.3;III. THE CYTOCHROME OXIDASE MOLECULE: A MEMBRANE PROTEIN;506
11.3.4;IV. SPECIFICITY;511
11.3.5;V. KINETICS AND SEQUENCE OF REACTIONS;512
11.3.6;VI. CONTROL;521
11.3.7;VI. TUNNELING IN THE RESPIRATORY CHAIN;524
11.3.8;VII. SUMMARY;527
11.3.9;REFERENCES;528
11.3.10;DISCUSSION;530
11.4;CHAPTER 35. DEFINITION OF THE SURFACE OF CYTOCHROME c INTERACTING WITH CYTOCHROME OXIDASE;532
11.4.1;I. RESULTS;534
11.4.2;REFERENCES;539
11.5;CHAPTER 36. STRUCTURE/FUNCTION RELATIONSHIPS IN BIOLOGICAL ELECTRON TRANSPORT PROTEINS;542
11.5.1;I. INTRODUCTION;542
11.5.2;II. ELECTRON TRANSPORT PROTEIN STRUCTURES;545
11.5.3;III. MECHANISMS;555
11.5.4;ACKNOWLEDGMENTS;559
11.5.5;REFERENCES;559
11.5.6;DISCUSSION;560
11.6;CHAPTER 37. GENERAL DISCUSSION: CYTOCHROME c AND SOME OTHER BIOLOGICAL REDOX MOLECULES;562
11.6.1;REFERENCES;576
12;PART VI: TUNNELING IN MODEL BIOLOGICAL SYSTEMS;578
12.1;CHAPTER 38. CONFORMATIONAL DISTRIBUTION AND VIBRONIC COUPLING IN THE BLUE COPPER-CONTAINING PROTEIN AZURIN;580
12.1.1;ACKNOWLEDGMENTS;586
12.1.2;REFERENCES;586
12.2;CHAPTER 39. OVERALL CHARGE CONTROL OF THE IONIC STRENGTH EFFECTS UPON THE REDOX KINETICS OF SMALL MOLECULE-PROTEIN AND PROTEIN-PROTEIN REACTIONS;588
12.2.1;REFERENCES;592
12.3;CHAPTER 40. THE ENERGY TRANSFORMING FUNCTION ASSOCIATED WITH ELECTRON TRANSFER REACTIONS IN BIOLOGICAL SYSTEMS;594
12.3.1;I. INTRODUCTION;594
12.3.2;II. THE ENERGY COUPLING;595
12.3.3;III. DISCUSSION;598
12.3.4;REFERENCES;599
12.4;CHAPTER 41. KINETIC EVIDENCE FOR ELECTRON TUNNELING IN SOLUTION;600
12.4.1;I. INTRODUCTION;600
12.4.2;EXPERIMENTAL METHODS;601
12.4.3;RESULTS;602
12.4.4;CONCLUSIONS;605
12.4.5;ACKNOWLEDGMENT;605
12.4.6;REFERENCES;606
12.5;CHAPTER 42. FERMI-LEVEL MATCHING: A POSSIBLE CONDITION IN REDOX ENZYME SPECIFICITY;608
12.5.1;REFERENCES;612
12.6;CHAPTER 43. GENERAL DISCUSSION: DISTANCES;614
12.6.1;REFERENCES;622
12.7;CHAPTER 44. SPECIFICITY AND CONTROL IN BIOLOGICAL SYSTEMS;624
12.7.1;REFERENCES;626
12.8;CHAPTER 45. GENERAL DISCUSSION: BIOLOGICAL SPECIFICITY AND CONTROL;628
12.8.1;REFERENCES;642
13;PART VII: MOLECULAR TUNNELING;644
13.1;CHAPTER 46. MOLECULAR TUNNELING IN HEME PROTEINS;646
13.1.1;I. MOLECULAR TUNNELING;646
13.1.2;II THE ACTIVE CENTER OF HEME PROTEINS;649
13.1.3;III. EXPERIMENTAL;651
13.1.4;IV CONFORMATIONAL STATES;656
13.1.5;V. EVALUATION OF TUNNELING DATA;658
13.1.6;VI. RESULTS AND OUTLOOK;662
13.1.7;ACKNOWLEDGMENTS;663
13.1.8;REFERENCES;664
13.1.9;DISCUSSION;665
13.2;CHAPTER 47. HEME LIGAND CONFIGURATION IN PHOTODISSOCIABLE FERROUS MYOGLOBIN COMPLEXES;670
13.2.1;ACKNOWLEDGMENT;677
13.2.2;REFERENCES;678
13.2.3;DISCUSSION;678
13.3;CHAPTER 48. GENERAL DISCUSSION: LIGAND BINDING;680
13.4;CHAPTER 49. QUANTUM CHEMICAL REACTIVITY NEAR ABSOLUTE ZERO: BIOLOGICAL, CHEMICAL, AND ASTROPHYSICAL ASPECTS;682
13.4.1;I. INTRODUCTION;682
13.4.2;II. THE LOW TEMPERATURE LIMIT OF CHEMICAL REACTION RATES
IN THE POLYMERIZATION OF FORMALDEHYDE;684
13.4.3;III. CHEMICAL REACTIONS AS RADIATIONLESS ELECTRON TRANSITIONS;692
13.4.4;IV. OTHER EXAMPLES OF APPARENT MOLECULAR TUNNELING IN CHEMICAL REACTIONS;710
13.4.5;V. ASTROPHYSICAL ASPECTS OF NON-ARRHENIUS KINETICS OF CHEMICAL REACTIONS: INTERSTELLAR DUST GRAINS AS POSSIBLE COLD SEEDS
OF LIFE;716
13.4.6;REFERENCES;723
13.4.7;DISCUSSION;726
14;PART VIII: EXPERIMENTAL APPROACHES;732
14.1;CHAPTER 50. NEW METHODS FOR EXPLORING TUNNELING PHENOMENA;734
14.1.1;REFERENCES;737
14.1.2;DISCUSSION;738
14.2;CHAPTER 51. GENERAL DISCUSSION: EXPERIMENTAL TECHNIQUES;740
14.2.1;REFERENCES;747
14.3;CHAPTER 52. MAGNETIC INTERACTIONS AND ELECTRON TRANSFER KINETICS OF THE REDUCED INTERMEDIATE ACCEPTOR IN REACTION CENTERS(RCs) OF RHODOPSEUDOMONAS SPHAEROIDES R-26. EVIDENCE FOR THERMALLY INDUCED TUNNELING;748
14.3.1;I. INTRODUCTION;748
14.3.2;II. EXPERIMENTAL;750
14.3.3;III.
THEORY;753
14.3.4;IV. COMPARISON BETWEEN THEORY AND EXPERIMENT;760
14.3.5;V. DISCUSSION AND CONCLUSION;760
14.3.6;REFERENCES;762
15;SUBJECT INDEX;764



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.