Chen / Kling | Business Analytics with Python | E-Book | www.sack.de
E-Book

E-Book, Englisch, 408 Seiten, Web PDF

Chen / Kling Business Analytics with Python

Essential Skills for Business Students
1. Auflage 2025
ISBN: 978-1-3986-1727-8
Verlag: Kogan Page
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Essential Skills for Business Students

E-Book, Englisch, 408 Seiten, Web PDF

ISBN: 978-1-3986-1727-8
Verlag: Kogan Page
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Your essential textbook for mastering business analytics through Python.

Business Analytics with Python by Bowei Chen and Gerhard Kling is the definitive guide for upper-level undergraduate and postgraduate students studying business, management or finance. Designed to support analytics modules that prioritize practical application, this textbook introduces students to data-driven decision-making through Python, without assuming a background in computer science. It aligns with course outcomes by integrating statistical, mathematical and machine learning techniques into a unified business context.

This textbook takes a holistic approach to business analytics, exploring how Python can be used to interpret and solve real-world problems. From foundational coding skills to the implementation of supervised and unsupervised machine learning methods, students learn how to translate data into insight across key business functions. Through industry-relevant case studies, including customer churn analysis, fraud detection and sales forecasting, learners build confidence in applying analytics to real organizational challenges.

Pedagogical features include:

- A running case study that reinforces practical learning across chapters

- Clear learning objectives and chapter summaries to track progress

- Step-by-step exercises and coding activities to build analytical fluency

- Examples grounded in real business applications for immediate relevance

Whether preparing for exams or building analytical capability for a future career, this textbook equips students with the tools to turn business data into strategic advantage.

Chen / Kling Business Analytics with Python jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Section - ONE: Introduction and preliminaries; Chapter - 01: Introduction; Chapter - 02: Mathematical foundations of business analytics; Chapter - 03: Getting started with python; Chapter - 04: Data wrangling; Chapter - 05: Data visualization; Section - TWO: Methods and techniques; Chapter - 06: Linear regression; Chapter - 07: Logistic regression; Chapter - 08: Neural networks; Chapter - 09: K-nearest neighbours; Chapter - 10: Naïve bayes; Chapter - 11: Tree-based methods; Chapter - 12: Support vector machines; Chapter - 13: Principal component analysis; Chapter - 14: Cluster analysis; Section - THREE: Applications and tools; Chapter - 15: Modelling supply chains - use cases; Chapter - 16: User interfaces and web applications; Chapter - 17: Answers to exercises;


Chen, Bowei
Bowei Chen is an Associate Professor of Marketing Analytics and Data Science at the Adam Smith Business School, University of Glasgow. He is also the Programme Director of the MSc in Finance and Management and an ESRC IAA Reviewer.

Kling, Gerhard
Gerhard Kling is a Professor in Finance at the University of Aberdeen. He has worked in higher education for over 18 years (SOAS, University of Southampton, UWE, Utrecht University). His current interests focus on machine learning (ML), artificial intelligence (AI), and their applications in FinTech and Green Finance.

Bowei Chen is an Associate Professor in Marketing Analytics and Data Science at the Adam Smith Business School, University of Glasgow, UK. He is the Programme Director of the MSc in Business Analytics.

Gerhard Kling is Professor in Finance at the University of Aberdeen, UK. He has worked in higher education (SOAS, University of Southampton, UWE, Utrecht University) and consulting (McKinsey).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.