E-Book, Englisch, 400 Seiten, Web PDF
Cheresh Angiogenesis: In Vivo Systems, Part A
1. Auflage 2009
ISBN: 978-0-08-092165-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 400 Seiten, Web PDF
ISBN: 978-0-08-092165-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Angiogenesis is the growth of new blood vessels and is an important natural process in the body. A healthy body maintains a perfect balance of angiogenesis modulators. In many serious disease states, however, the body loses control over angiogenesis. Diseases that are angiogenesis-dependent result when blood vessels either grow excessively or insufficiently. Understanding how angiogenesis 'works' and how to control it, will have massive implications on the management, treatments, and ultimately the prevention of many common (and not so common) diseases.
Angiogenesis cuts across virtually every discipline. The Angiogenesis Foundation identified angiogenesis as a 'common denominator' in our most serious diseases. Excessive angiogenesis occurs in diseases such as cancer, diabetic blindness, age-related macular degeneration, rheumatoid arthritis, psoriasis, and many other conditions. Insufficient angiogenesis occurs in diseases such as coronary artery disease, stroke, and delayed wound healing.
* Tried-and-tested techniques written by researchers that developed them, used them, and brought them to fruition.
* Provides the 'builder's manual' for essential techniques. This is a one-stop shop that eliminates needless searching among untested techniques.
* Includes step-by-step methods for understanding the cell and molecular basis of wound healing, vascular integrin signaling, mechanical signaling in blood vessels, and vascular proteomics
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Methods in Enzymology;4
3;Copyright Page;5
4;Contents;6
5;Contributors;12
6;Preface;16
7;Volumes in Series;18
8;Chapter 1: Molecular Mechanism of Type IV Collagen-Derived Endogenous Inhibitors of Angiogenesis;44
8.1;1. Introduction;45
8.2;2. Molecular Mechanism of Type IV Collagen-Derived Endogenous Inhibitors;46
8.3;3. Assessing the Role of Type IV Collagen-Derived Endogenous Inhibitor During Angiogenesis;56
8.4;4. Concluding Remarks;59
8.5;References;60
9;Chapter 2: Chick Embryo Chorioallantoic Membrane Models to Quantify Angiogenesis Induced by Inflammatory and Tumor Cells or Purified Effector Molecules;64
9.1;1. Introduction;65
9.2;2. Overview of CAM Angiogenesis Models;67
9.3;3. Assessing the Role of Purified Effector Molecules and Cells in Angiogenesis Using CAM Collagen Onplant Model;73
9.4;4. CAM Collagen Onplant Assay Protocol;74
9.5;5. Validation of CAM Angiogenesis Findings in Collagen Implant Mouse Model;81
9.6;Acknowledgment;82
9.7;References;82
10;Chapter 3: The Adenoviral Vector Angiogenesis/Lymphangiogenesis Assay;86
10.1;1. Introduction;87
10.2;2. Methods;89
10.3;3. Blood Vessels Induced by Ad-VEGF-A164;96
10.4;4. Giant Lymphatics Induced by Ad-VEGF-A164;101
10.5;5. Use of Ear Angiogenesis Assay to Evaluate Antiangiogenesis Drugs;102
10.6;6. Commentary and Future Perspectives;103
10.7;Acknowledgments;104
10.8;References;104
11;Chapter 4: Using the Zebrafish to Study Vessel Formation;108
11.1;1. Introduction;109
11.2;2. Methods for Functional Manipulation of Zebrafish;111
11.3;3. Methods for Visualizing Vessels in Zebrafish;119
11.4;4. Conclusion;134
11.5;Acknowledgment;134
11.6;References;134
12;Chapter 5: Evaluating Vascular Leak in Vivo;142
12.1;1. Introduction;143
12.2;2. Mechanisms of Vascular Leak;143
12.3;3. Consequences of Vascular Leak in Disease;144
12.4;4. Models to Study Vascular Leak In Vivo;145
12.5;5. Concluding Remarks;155
12.6;Acknowledgments;155
12.7;References;155
13;Chapter 6: Ocular Models of Angiogenesis;158
13.1;1. Introduction;159
13.2;2. Techniques Commonly Used in Ocular Angiogenesis Protocols;161
13.3;3. Corneal Micropocket Assay;163
13.4;4. Neonatal Mouse Retinal Developmental Angiogenesis Model;167
13.5;5. Oxygen-Induced Retinopathy Model;171
13.6;6. Laser-induced Retinal and Choroidal Neovascularization Models;178
13.7;7. Retinal Vascular Permeability Models;181
13.8;8. Three-Dimensional in Vivo Imaging of the Mouse Ocular Vasculature;184
13.9;9. Cell-based Models and Ocular Angiogenesis;194
13.10;10. Concluding Remarks;197
13.11;References;197
14;Chapter 7: Mouse Models of Ischemic Angiogenesis and Ischemia-Reperfusion Injury;202
14.1;1. Introduction;203
14.2;2. Overview of Methods in Hindlimb I/R Injury;204
14.3;3. Evaluating Hindlimb Ischemia/Reperfusion Injury;207
14.4;4. Overview of Methods in Chronic Hindlimb Ischemia;210
14.5;5. Overview of Murine Models of Acute Myocardial Infarction and Myocardial I/R Injury;214
14.6;6. Conclusion;216
14.7;References;217
15;Chapter 8: Noninvasive Imaging of Blood Vessels;218
15.1;1. Introduction;219
15.2;2. Methods;224
15.3;References;240
16;Chapter 9: Intravital Videomicroscopy in Angiogenesis Research;244
16.1;1. Introduction;245
16.2;2. Methods;249
16.3;3. Summary;271
16.4;Acknowledgments;271
16.5;References;271
17;Chapter 10: In Vivo Measurements of Blood Flow and Glial Cell Function with Two-Photon Laser-Scanning Microscopy;274
17.1;1. Introduction;275
17.2;2. Two-Photon Microscopy of Fluorescent Labels as a Tool for Brain Imaging;277
17.3;3. Photoprocesses for Targeted Disruption of Vascular Flow;290
17.4;4. Outlook;291
17.5;Acknowledgments;294
17.6;References;294
18;Chapter 11: The Role of Bone Marrow-Derived Cells in Tumor Angiogenesis and Metastatic Progression;298
18.1;1. The Angiogenic Switch;299
18.2;2. Origin of Angiogenic Endothelial Cells;299
18.3;3. Bone-Marrow-Derived Cells: Endothelial and Hematopoietic Progenitor Cells;300
18.4;4. Bone Marrow-Cell Mobilization in Response to Tumor Factors;301
18.5;5. Contribution of BMDCs in Tumor Angiogenesis;301
18.6;6. EPCs and HPCs are Required for Tumor Angiogenesis;302
18.7;7. Cooperation between BM-Derived Hematopoietic and Endothelial Precursors;303
18.8;8. VEGFR1+ HPCs Define the Premetastatic Niche;304
18.9;9. Stromal Cells: Carcinoma-Associated Fibroblasts (CAFs);306
18.10;10. Activation of the SDF-1-CXCR4 Pathway in Mobilization of Proangiogenic Cells;306
18.11;11. Future Directions;308
18.12;References;309
19;Chapter 12: Structure of Microvascular Networks in Genetic Hypertension;314
19.1;1. Introduction;315
19.2;2. Methods;316
19.3;3. Results;318
19.4;4. Discussion;322
19.5;5. Summary;325
19.6;References;325
20;Chapter 13: Oxygen as a Direct and Indirect Biological Determinant in the Vasculature;328
20.1;1. Introduction;329
20.2;2. Mechanisms of Oxygen Sensing and Transduction into Vascular Biological Responses;329
20.3;3. Physiological, Pathophysiological, and Clinical Settings in Which Oxygen Levels Influence the Vasculature;336
20.4;4. Summary;343
20.5;References;343
21;Chapter 14: Measuring Intratumoral Microvessel Density;348
21.1;1. Introduction;348
21.2;2. Measuring Intratumoral Microvessel Density;350
21.3;3. Highlighting Microvessels for Microvessel Counting;353
21.4;4. Histological Quantitation of Tumor Angiogenesis;355
21.5;5. Novel in Vivo Methods for Measuring Microvessel Density;357
21.6;References;358
22;Author Index;368
23;Subject Index;396
24;Color Plate Section;402