E-Book, Englisch, 720 Seiten, Web PDF
Choppin / Liljenzin / Rydberg Radiochemistry and Nuclear Chemistry
2. Auflage 2016
ISBN: 978-1-4832-9346-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
2nd Edition of Nuclear Chemistry, Theory and Applications
E-Book, Englisch, 720 Seiten, Web PDF
ISBN: 978-1-4832-9346-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Nuclear chemistry comprises isotope chemistry, radiochemistry, radiation chemistry and nuclear reaction chemistry, along with applications. These interrelated fields are all covered in this textbook for chemists and chemical engineers. This new editionof the standard work 'Nuclear Chemistry' has been completely rewritten and restructured to suit teaching and learning needs in a wide range of chemistry courses, such as basic courses in radiochemistry, or more advanced nuclear chemistry courses.The book is divided into sections that closely fit teaching demands. The first chapter gives a broad introduction and background to the subject, and the second chapter covers stable isotopes. Chapters 3 to 9 comprise what is generally regarded as'radiochemistry'. Chapters 10 to 17 offer a course in nuclear reaction chemistry. Chapter 18 deals with biological radiation effects for the chemist. The last four chapters give a guide to nuclear energy: energy production, fuel cycle, waste management,the largest applied field of nuclear chemistry. Over 200 exercises, with model answers, remain largely unchanged from the first edition, so teachers working from the earlier text should find only advantages in switching to this new restructured coursebook on all aspects of nuclear chemistry. 'The book fully meets the authors objectives, it is well written in a logical, objective, thought-provoking and quite easily readable style. It should appeal to the serious student of radio- and nuclearchemistry at either undergraduate or postgraduate level, as well as to readers with a more general interest in nuclear science and its impact on the environment.' - Applied Radiation and Isotopes, July 1995 'This book is an excellent, readable accountof a significant part of the scientific achievements of more than half this century. The authors have dedicated the book to Nobel Laureate Glenn T. Seaborg and its scholarship makes it a fitting tribute.' - Radiological Protection Bulletin, December 1995
Jan-Olov Liljenzin was professor in Nuclear Chemistry at Chalmers University of Technology, Sweden, between 1989 and 2001, where he was also Dean of the School of Chemical Engineering from 1990 to 1995. Between 1986 and 1989 he was professor in Chemistry at the University of Oslo and Head of the National Committee on Nuclear Science in Norway. Prior to this, his extensive experience saw him hold positions at institutes around the world, including Euratom CCR, Ispra, Italy, and Lawrence Berkeley Laboratory, Berkeley, California, USA. He is an elected member of the Royal Swedish Academy of Engineering Sciences, the Royal Society of Arts and Languages, Göteborg and a permanent member of the Swedish Chemical Society.His research has, among other things, involved the influence of chemistry on core melt accidents, leading on to international research about iodine chemistry, how to mitigate radioactive releases from nuclear accidents, various methods of treatment and separation of spent radioactive fuel, and chemical aspects of final repositories for radioactive waste. After his return to Sweden he was chairman of the research committee at the Swedish Nuclear Power Inspectorate until his retirement. He has 255 published papers and reports in his name or as a coauthor, and is coauthor of several textbooks and monographies.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Radiochemistry and Nuclear Chemistry;4
3;Copyright Page;5
4;Table of Contents;6
5;Dedication;3
6;Foreword;8
7;Chapter
1. Origin of Nuclear Science;10
7.1;1.1. Radioactive elements;10
7.2;1.2. Radioactive decay;11
7.3;1.3. Discovery of isotopes;12
7.4;1.4. Atomic models;15
7.5;1.5. Literature;18
8;Chapter
2. Nuclei, Isotopes and Isotope Separation;20
8.1;2.1. Species of atomic nuclei;20
8.2;2.2. Atomic masses and atomic weights;21
8.3;2.3. Determination of isotopic masses and abundances;23
8.4;2.4. Isotopic ratios in nature;27
8.5;2.5. Physicochemical differences for isotopes1;29
8.6;2 .6 . Isotope effects in chemical equilibrium;29
8.7;2.7. Isotope effects in chemical kinetics;36
8.8;2.8. Isotope separation processes;39
8.9;2.9. Exercises;48
8.10;2.10. Literature;48
9;Chapter
3. Nuclear Mass and Stability;50
9.1;3.1. Patterns of nuclear stability;50
9.2;3.2. Neutron to proton ratio;52
9.3;3.3. Mass defect;54
9.4;3.4. Binding energy;56
9.5;3.5. Nuclear radius;57
9.6;3.6. Semiempirical mass equation;59
9.7;3.7. Valley of ß-stability;60
9.8;3.8. The missing elements: 43Tc and 61Pm;62
9.9;3,9. Other modes of instability;65
9.10;3.10. Exercises;65
10;Chapter
4. Unstable Nuclei and Radioactive Decay;67
10.1;4.1. Radioactive decay;67
10.2;4.2. Conservation laws;69
10.3;4.3. Alpha decay;70
10.4;4.4. Beta decay;72
10.5;4.5. Gamma emission and internal conversion;79
10.6;4.6. Spontaneous fission;81
10.7;4.7. Rare modes of decay;83
10.8;4.8. Decay schemes and isotope charts;83
10.9;4.9. Secondary processes in the atom;85
10.10;4.10. Closed decay energy cycles;87
10.11;4.11. Kinetics of simple radioactive decay;88
10.12;4.12. Mixed decay;91
10.13;4.13. Radioactive decay units;92
10.14;4.14. Branching decay;93
10.15;4.15. Successive radioactive decay;93
10.16;4.16. Radioisotope generators;98
10.17;4.17. Decay energy and half-life;99
10.18;4.18. The Heisenberg uncertainty principle;99
10.19;4.19. Exercises;100
10.20;4.20. Literature;102
11;Chapter
5. Radionuclides in Nature;103
11.1;5.1. Cosmogenic radionuclides;104
11.2;5.2. Primordial radionuclides;106
11.3;5.3. Transuranic elements in nature and the Np decay series;108
11.4;5.4. Thorium;112
11.5;5.5. Uranium;113
11.6;5.6. Radium and radon in the environment;117
11.7;5.7. Disequilibrium;118
11.8;5.8. Age determination from radioactive decay;119
11.9;5.9. Natural radioactivity of the oceans;126
11.10;5.10. Anthropogenic radioactivity in nature;127
11.11;5.11. Exercises;130
11.12;5.12. Literature;130
12;Chapter
6. Absorption of Nuclear Radiation;132
12.1;6.1. Survey of absorption processes;134
12.2;6.2. Absorption curves;135
12.3;6.3. Absorption of protons and heavier ions;139
12.4;6.4. Absorption of electrons;143
12.5;6.5. Absorption of 7 . -radiation;150
12.6;6 .6 . Absorption of neutrons;156
12.7;6.7. Radiation shielding;156
12.8;6.8. Analytical applications of radiation absorption;158
12.9;6.9. Technical applications of radiation sources;166
12.10;6.10. Exercises;173
12.11;6.11. Literature;174
13;Chapter
7. Radiation Effects on Matter;175
13.1;7.1. Energy transfer;176
13.2;7.2. Radiation tracks;178
13.3;7.3. Radiation dose and radiation yield;179
13.4;7.4. Metals;181
13.5;7.5. Inorganic nonmetallic compounds;182
13.6;7.6. Water;185
13.7;7.7. Aqueous solutions;186
13.8;7.8. Organic compounds;189
13.9;7.9. Experimental methods;192
13.10;7.11. Large-scale non-biological applications;195
13.11;7.12. Technical uses of small dose-rates;198
13.12;7.14. Literature;199
14;Chapter
8. Detection and Measurement Techniques;201
14.1;8.1. Track measurements;202
14.2;8.2. General properties of detectors;207
14.3;8.3. Gas counters;213
14.4;8.4. Semiconductor detectors;221
14.5;8.5. Scintillation detectors;227
14.6;8.6. Cerenkov detectors;231
14.7;8.7. Electronics for pulse counting;232
14.8;8.8. Special counting systems;238
14.9;8.9. Absolute disintegration rates;240
14.10;8.10. Sample preparation;242
14.11;8.11. Statistics of counting and associated error;242
14.12;8.12. Exercises;246
14.13;8.13. Literature;246
15;Chapter
9. Uses of Radioactive Tracers;248
15.1;9.1. Basic assumptions for tracer use;249
15.2;9.2. Chemistry of trace concentrations;250
15.3;9,3. Analytical chemistry;257
15.4;9.4. Applications to general chemistry;265
15.5;9.5. Applications to life sciences;275
15.6;9.6. Industrial uses of radiotracers;286
15.7;9.7. Environmental applications;288
15.8;9.8. Exercises;289
15.9;9.9. Literature;290
16;Chapter
10. Cosmic Radiation and Elementary Particles;292
16.1;10.1. Primary cosmic radiation;292
16.2;10.2. Secondary reactions in the earth's atmosphere;295
16.3;10.3. Elementary particles and forces of nature;296
16.4;10.4. Waves and particles;298
16.5;10.5. Formation and properties of some elementary particles;299
16.6;10.6. The neutrino;301
16.7;10.7. Quarks and the Standard Model;303
16.8;10.8. Exercises;307
16.9;10.9. Literature;307
17;Chapter
11. Nuclear Structure;308
17.1;11.1. Requirements of a nuclear model;309
17.2;11.2. Rotational energy and angular momentum;312
17.3;11.3. The single-particle shell model;320
17.4;11.4. Deformed nuclei;325
17.5;11.5. The unified model of deformed nuclei;327
17.6;11.6. Interaction between the nuclear spin and the electron structure;328
17.7;11.7. Radioactive decay and nuclear structure;333
17.8;11.8. Exercises;342
17.9;11.9. Literature;342
18;Chapter
12. Energetics of Nuclear Reactions;343
18.1;12.1. Conservation laws in nuclear reactions;343
18.2;12.2. The mass energy;344
18.3;12.3. The Coulomb barrier;345
18.4;12.4. Rutherford scattering;349
18.5;12.5. Elastic scattering;350
18.6;12.6. Inelastic scattering;352
18.7;12.7. Dissecting a nuclear reaction;352
18.8;12.8. The compound nucleus model;354
18.9;12.9. Radioactive neutron sources;355
18.10;12.10. Exercises;356
19;Chapter
13. Particle Accelerators;357
19.1;13.1· Charged particle accelerators;357
19.2;13.2. Ion source;358
19.3;13.3. Single-stage accelerators;359
19.4;13.4. van de Graaff accelerators;361
19.5;13.5. Multiple-stage linear accelerators;362
19.6;13.6. Cyclotrons;365
19.7;13,7. Frequency modulated cyclotrons and synchrotrons;368
19.8;13.8. Neutron generators;370
19.9;13.9. Areas of application for accelerators;372
19.10;13.10. Exercises;372
19.11;13.11. Literature;373
20;Chapter
14. Mechanisms and Models of Nuclear Reactions;374
20.1;14.1. The reaction cross-section;374
20.2;14.2. Partial reaction cross-sections;376
20.3;14.3. Resonance and tunneling;377
20.4;14.4. Neutron capture and scattering;379
20.5;14.5. Neutron diffraction;380
20.6;14.6. Models for nuclear reactions;381
20.7;14.7. Nuclear fission;387
20.8;14.8. Photonuclear reactions;394
20.9;14.9. Exercises;395
20.10;14.10. Literature;395
21;Chapter
15. Production of Radionuclides;396
21.1;15.1. General considerations;397
21.2;15.2. Irradiation yields;398
21.3;15.3. Second-order reactions;401
21.4;15.4. Target considerations;405
21.5;15.5. Product specifications;407
21.6;15.6. Recoil separations;410
21.7;15.7. Fast radiochemical separations;414
21.8;15.8. Exercises;420
21.9;15.9. Literature;422
22;Chapter
16. The Transuranium Elements;423
22.1;16.1. Early "transuranium" elements;423
22.2;16.2. Production of transuranic elements;424
22.3;16.3, Actinide properties;435
22.4;16.4. Uses of actinides;443
22.5;16.5. Chemistry of the transactinide elements;445
22.6;16.6. Exercises;445
22.7;16.7. Literature;446
23;Chapter
17. Thermonuclear Reactions:The Beginning and the Future;447
23.1;17.1. Observations from space probe Earth;448
23.2;17.2. In the beginning of time;454
23.3;17.3. Star ignition;457
23.4;17.4. Fusion processes in stars;459
23.5;17.5. Neutron capture process: from iron to uranium;465
23.6;17.6. Age of the Galaxy;470
23.7;17.7. The evolution of the planets and the Earth;472
23.8;17.8. Controlled thermonuclear reactions;474
23.9;17.9. Exercises;480
23.10;17.10. Literature;480
24;Chapter
18. Radiation Biology and Radiation Protection;482
24.1;18.1. The biological target;484
24.2;18.2. Radiation effects on the molecular level;486
24.3;18.3. Radiation effects on different types of cells;489
24.4;18.4. Some concepts of radiation biology;491
24.5;18.5. Further regularities at large doses;493
24.6;18.6. Epidemiological observations of effects at large radiation doses;495
24.7;18.7. Radiation sterilization;499
24.8;18.8. Genetic effects;500
24.9;18.9. Radiomimetic substances;501
24.10;18.10. Radiation background;502
24.11;18.11. Somatic effects of low radiation doses;503
24.12;18.12. The dose-effect curves;505
24.13;18.13. Regulatory recommendations and protection standards;507
24.14;18.14. Protective measures for radiochemical laboratory work;516
24.15;18.15. Control of radiation protection measures;520
24.16;18.16. Exercises;520
24.17;18.17. Literature;521
25;Chapter
19. Principles of Nuclear Power;522
25.1;19.1. The nuclear reactor;524
25.2;19.2. Energy release in fission;527
25.3;19.3. Fission probability;528
25.4;19.4. The fission factor;530
25.5;19.5. Neutron moderation;532
25.6;19.6. The neutron cycle;533
25.7;19.7. Neutron leakage and critical size;537
25.8;19.8. Reactor kinetics;538
25.9;19.9. Fuel utilization;541
25.10;19.10. The Oklo phenomenon;545
25.11;19.11. Reactor concepts;548
25.12;19.12. Research and test reactors;548
25.13;19.13. Thermal power reactors;549
25.14;19.14. Power station efficiency;554
25.15;19.15. Reactor safety;556
25.16;19.16. Radioactive reactor waste;561
25.17;19.17. Nuclear explosives;563
25.18;19.18. Exercises;566
25.19;19.19. Literature;567
26;Chapter
20. Nuclear Power Reactors;568
26.1;20.1. Thermal reactors;568
26.2;20.2. Chemistry of water cooled reactors;575
26.3;20.3. Breeder reactors;576
26.4;20.4. Reactor waste;581
26.5;20.5. Safe operation of nuclear reactors;587
26.6;20.6· Exercises;588
26.7;20.7. Literature;589
27;Chapter
21. The Nuclear Fuel Cycle;590
27.1;21.1. Production of fuel elements;592
27.2;21.2. Power generation;595
27.3;21.3. Composition and properties of spent fuel elements;599
27.4;21.4. Management of spent fuel;605
27.5;21.5. Alternative fuel cycles;607
27.6;21.6. Reprocessing of uranium and mixed oxide fuels;611
27.7;21.7. Reprocessing thorium fuels;621
27.8;21.8. Wastes streams from reprocessing;622
27.9;21.9. Treatment and deposition of low and medium level wastes;626
27.10;21.10. Tank storage of high level liquid wastes;628
27.11;21.11. Options for final treatment of high level wastes;629
27.12;21.12. Solidification of high level liquid wastes;636
27.13;21.13. Deposition in geologic formations;639
27.14;21.14. Beneficial utilization of nuclear wastes;645
27.15;21.15. Exercises;646
27.16;21.16. Literature;647
28;Chapter
22. Behavior of Radionuclides in the Environment;648
28.1;22.1. Radioactive releases and possible effects;649
28.2;22.2. Radionuclides of environmental concern;650
28.3;22.3. Releases from the Chernobyl accident;652
28.4;22.4. Injection of TRU into the environment;654
28.5;22.5, Present levels of TRU in the ecosphere;655
28.6;22.6. Actinide chemistry in the ecosphere;657
28.7;22.7. Speciation calculations;663
28.8;22.8· Natural analogues;667
28.9;22.9. The Oklo reactor;668
28.10;22.10. Performance assessments of waste repositories;669
28.11;22.11. Conclusions;678
28.12;22.12. Exercises;678
28.13;22.13. Literature;678
29;Appendix A: Solvent Extraction Separations;680
29.1;A.I. Single stage batch extractions;680
29.2;A.2. Multiple stage continuous processes;682
29.3;A.3. High loadings;684
29.4;A.4. Solvent extraction equipment;686
29.5;A.5. Exercises;687
29.6;A.6. Literature;687
30;Appendix B: Answers to Exercises;688
31;APPENDIX C: CHART OF THE NUCLIDES: on to 83Bi;691
32;APPENDIX I: PERIODIC TABLE OF THE ELEMENTS;693
33;APPENDIX II: Quantities and units;694
34;APPENDIX III: Fundamental constants;695
35;Element and Nuclide Index;697
36;Subject Index1;702