E-Book, Englisch, Band 49, 628 Seiten, eBook
Dahal / Tan / Cowling Evolutionary Scheduling
Erscheinungsjahr 2007
ISBN: 978-3-540-48584-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 49, 628 Seiten, eBook
Reihe: Studies in Computational Intelligence
ISBN: 978-3-540-48584-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Methodology.- Memetic Algorithms in Planning, Scheduling, and Timetabling.- Landscapes, Embedded Paths and Evolutionary Scheduling.- Classical and Non-Classical Models of Production Scheduling.- Scheduling of Flow-Shop, Job-Shop, and Combined Scheduling Problems using MOEAs with Fixed and Variable Length Chromosomes.- Designing Dispatching Rules to Minimize Total Tardiness.- A Robust Meta-Hyper-Heuristic Approach to Hybrid Flow-Shop Scheduling.- Hybrid Particle Swarm Optimizers in the Single Machine Scheduling Problem: An Experimental Study.- An Evolutionary Approach for Solving the Multi-Objective Job-Shop Scheduling Problem.- Timetabling.- Multi-Objective Evolutionary Algorithm for University Class Timetabling Problem.- Metaheuristics for University Course Timetabling.- Energy Applications.- Optimum Oil Production Planning using an Evolutionary Approach.- A Hybrid Evolutionary Algorithm for Service Restoration in Power Distribution Systems.- Particle Swarm Optimisation for Operational Planning: Unit Commitment and Economic Dispatch.- Evolutionary Generator Maintenance Scheduling in Power Systems.- Networks.- Evolvable Fuzzy Scheduling Scheme for Multiple-ChannelPacket Switching Network.- A Multi-Objective Evolutionary Algorithm for Channel Routing Problems.- Transport.- Simultaneous Planning and Scheduling for Multi-Autonomous Vehicles.- Scheduling Production and Distribution of Rapidly Perishable Materials with Hybrid GA's.- A Scenario-based Evolutionary Scheduling Approach for Assessing Future Supply Chain Fleet Capabilities.- Business.- Evolutionary Optimization of Business Process Designs.- Using a Large Set of Low Level Heuristics in a Hyperheuristic Approach to Personnel Scheduling.- A Genetic-Algorithm-Based Reconfigurable Scheduler.- Evolutionary Algorithm foran Inventory Location Problem.