E-Book, Englisch, Band Volume 1, 454 Seiten, Web PDF
Reihe: IFAC Workshop Series
Day / Hashimoto Mathematical and Control Applications in Agriculture and Horticulture
1. Auflage 2014
ISBN: 978-1-4832-9839-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 1, 454 Seiten, Web PDF
Reihe: IFAC Workshop Series
ISBN: 978-1-4832-9839-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This title provides a general overview of recent developments and research into types of systems and their uses in the agricultural and horticultural industry. 64 papers are included, containing both theoretical models and applied examples for greenhouse systems, harvesting technology and plant factory systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Mathematical and Control Applications in Agriculture and Horticulture;4
3;Copyright Page;5
4;Table of Contents;8
5;PART I: GREENHOUSE SYSTEMS;14
5.1;Chapter 1. Optimal Control for Plant Production in Greenhouses;14
5.1.1;INTRODUCTION;14
5.1.2;CONCEPTION OF ENVIRON-MENTAL CONTROL;14
5.1.3;ENVIRONMENTAL CONTROL;15
5.1.4;CONCLUSIONS;17
5.1.5;REFERENCES;17
5.2;Chapter 2. Physical Modeling of Greenhouse Climate;20
5.2.1;INTRODUCTION;20
5.2.2;GENERAL ASPECTS;20
5.2.3;PHYSICAL PROCESSES;21
5.2.4;DYNAMIC MODEL;23
5.2.5;CONCLUSIONS;23
5.2.6;REFERENCES;23
5.3;Chapter 3. Reflections about Optimal Climate Control in Greenhouse Cultivation;26
5.3.1;INTRODUCTION;26
5.3.2;OPTIMAL CONTROL, AN ANALYSIS;26
5.3.3;OPTIMAL CONTROL, A SYNTHESIS;28
5.3.4;CONCLUSIONS;30
5.3.5;REFERENCES;31
5.4;Chapter 4. Greenhouse Production in Engineering Aspects;32
5.4.1;INTRODUCTION;32
5.4.2;COMPUTER CONTROL;32
5.4.3;AUTOMATION & ROBOTICS;32
5.4.4;SENSOR DEVELOPMENT;32
5.4.5;PLANT FACTORY;33
5.4.6;INFORMATION NETWORK;33
5.4.7;BIOSPHERE II & SPACE FARMING;33
5.4.8;REFERENCES;34
5.5;Chapter 5. The Path to Dynamic Optimization of Carbon Dioxide in the Greenhouse;36
5.5.1;Introduction;36
5.5.2;The path and its steps;36
5.5.3;Models of component processes: crop response.;36
5.5.4;Models of component processes: input costs;37
5.5.5;Optimization procedure;37
5.5.6;Implementation of dynamic control;37
5.5.7;The future;38
5.5.8;References;38
5.6;Chapter 6. Optimal Control of Greenhouse Climate;40
5.6.1;INTRODUCTION;40
5.6.2;THE OPTIMIZATION PROBLEM;41
5.6.3;THE LETTUCE CROP GROWTH MODEL;41
5.6.4;THE GREENHOUSE CLIMATE MODEL;42
5.6.5;DETERMINISTIC OPTIMAL CONTROL;42
5.6.6;OPEN-LOOP CONTROL;43
5.6.7;OPEN-LOOP FEEDBACK CONTROL;43
5.6.8;CONCLUSIONS;43
5.6.9;REFERENCES;44
5.7;Chapter 7. Self-adaptive and Self-tuning Control of a Nutrient Film Technique (NFT) System;46
5.7.1;INTRODUCTION;46
5.7.2;THE NFT SYSTEM;46
5.7.3;MODELLING AND CONTROL OF A PILOT SCALE FLOW MODEL OF THE NFT SYSTEM;49
5.7.4;CONCLUSIONS;51
5.7.5;REFERENCES;52
5.8;Chapter 8. True Digital Control of Glasshouse Systems;54
5.8.1;INTRODUCTION;54
5.8.2;THE NON-MINIMUM STATE SPACE (NMSS) MODEL;55
5.8.3;RELATIONSHIP BETWEEN PIP AND CONVENTIONAL STATE VARIABLE FEEDBACK SYSTEMS;56
5.8.4;EXAMPLE 1: TEMPERATURE CONTROL IN A GLASSHOUSE SYSTEM;56
5.8.5;EXAMPLE 2: SELF-ADAPTIVE PIP CONTROL OF A NON LINEAR HEATED BAR SYSTEM;57
5.8.6;CONCLUSIONS;58
5.8.7;REFERENCES;58
5.9;Chapter 9. Simulation Model to Estimate Fresh Mass of a Plant;60
5.9.1;INTRODUCTION;60
5.9.2;STRUCTURE OF THE MODEL;60
5.9.3;PHYSICAL EXPERIMENT;62
5.9.4;RESULTS AND DISCUSSION;62
5.9.5;CONCLUSIONS;63
5.9.6;REFERENCES;63
5.10;Chapter 10. Performance of Zone Cooling System in Greenhouse: An Evaluation of Experimental Factors;64
5.10.1;INTRODUCTION;64
5.10.2;MATERIALS AND METHODS;64
5.10.3;RESULTS AND DISCUSSION;66
5.10.4;C0NCLUSSI0N;68
5.10.5;REFERENCE;69
5.11;Chapter 11. Introducing Dutch Substrate System to Japan;70
5.11.1;THE PRESENT CONDITION OF SOILLESS CULTURE IN JAPAN;70
5.11.2;PROGRESS OF IMPORT A DUTCH SUBSTRATE SYSTEM;71
5.11.3;RESULTS OF THE TRIAL INTRODUCE;71
5.11.4;THE OUTLINE OF INTRODUCED DUTCH SYSTEM;72
5.11.5;GROWERS INDEX IN 2000 IN JAPAN;74
5.11.6;CONCLUSION;75
5.11.7;REFERENCES;75
5.12;Chapter 12. Two Approaches to Environmental Control in Greenhouses - Heat Balance Analysis and
System Identification in Heating System with Heat Pump;76
5.12.1;INTRODUCTION;76
5.12.2;METHODS;76
5.12.3;RESULTS;77
5.12.4;CONCLUSION;77
5.12.5;ACKNOWLEDGMENTS;78
5.12.6;REFERENCES;78
5.13;Chapter 13. Light Transmissive and Thermally Insulated Walls for Horticulture;80
5.13.1;1. Introduction;80
5.13.2;2. Insulating Properties of LT2 I Panels;81
5.13.3;3. Solar Heat Collection Properties of a Greenhouse Constructed with LT2I Wall Panels;82
5.13.4;4. Thermal Shading Properties of a Greenhouse Constructed with LT2I Wall Panels;83
5.13.5;5. Application of the Panels to an Actual Greenhouse;83
5.13.6;6. Conclusions;85
5.13.7;References;85
5.14;Chapter 14. Optimal Greenhouse Temperature Trajectories for a Multi-state-variable Tomato Model;86
5.14.1;INTRODUCTION;86
5.14.2;METHODS;86
5.14.3;RESULTS;87
5.14.4;DISCUSSION AND CONCLUSIONS;90
5.14.5;ACKNOWLEDGEMENT;91
5.14.6;REFERENCES;91
6;PART II: PLANT FACTORY SYSTEMS;94
6.1;Chapter 1. Fundamental Study of Plant Factories;94
6.1.1;INTRODUCTION;94
6.1.2;MEASURING INSTRUMENTS;94
6.1.3;GROWTH MEASUREMENT OF SWEET PEPPERS;96
6.1.4;FEASIBILITY STUDY;97
6.1.5;REFERENCES;97
6.2;Chapter 2. Plant Factory and its Prospects;98
6.2.1;INTRODUCTION;98
6.2.2;PRINCIPLE OF PLANT FACTORY;98
6.2.3;INVESTIGATION OF PLANT FACTORY;101
6.2.4;PROSPECTS OF PLANT FACTORY;104
6.2.5;REFERENCES;105
6.3;Chapter 3. Measurement, Modelling and Control Problems for Biotechnical Processes;106
6.3.1;INTRODUCTION;106
6.3.2;MEASUREMENT TECHNIQUES FOR BIOTECHNICAL SYSTEMS;106
6.3.3;MODEL BASED PREDICTIVE CONTROL;107
6.3.4;INFORMATION CONTENT OF MEASUREMENTS;108
6.3.5;APPLICATION TO A BIOTECHNICAL PROCESS IN A TOWER REACTOR;108
6.3.6;CONCLUSIONS;110
6.3.7;REFERENCES;111
6.4;Chapter 4. Environmental Control in Plant Tissue Culture and its Application for Micropropagation;112
6.4.1;INTRODUCTION;112
6.4.2;ENVIRONMENTAL FACTORS IN PLANT TISSUE CULTURE;112
6.4.3;SOME CONSIDERATIONS FOR MEASUREMENT AND CONTROL OF THE ENVIRONMENT;113
6.4.4;ENVIRONMENTAL EFFECTS ON PHOTOSYNTHETIC GROWTH AND DEVELOPMENT (Kozai, 1991c);114
6.4.5;ADVANTAGES OF PHOTOAUT0TR0PHIC MICROPROPAGATION;115
6.4.6;REFERENCES;116
6.5;Chapter 5. Computer Integrated Plant Growth Factory for Agriculture and Horticulture;118
6.5.1;INTRODUCTION;118
6.5.2;PROCESS CONTROL OF PLANT GROWTH FACTORY (GREENHOUSE CLIMATE CONTROL);119
6.5.3;SPEAKING PLANT APPROACH TO CULTIVATING PROCESS CONTROL;119
6.5.4;COMPUTER SUPPORT SYSTEM FOR CONTROL, HORTICULTURAL OPERATION AND MANAGEMENT;120
6.5.5;COMPUTER INTEGRATED PLANT GROWTH FACTORY;120
6.5.6;CONCLUSION;122
6.5.7;REFERENCES;122
6.6;Chapter 6. Induced Lignification and Elicitors - A Case of Plant Host-Parasite Interactions;124
6.6.1;INTRODUCTION;124
6.6.2;BIOLOGICAL MODEL OF DISEASE CONTROL;124
6.6.3;CONCLUSION;127
6.6.4;REFERENCES;127
6.7;Chapter 7. Water and the Physiological Regulation of Growth in Controlled Environments;134
6.7.1;INTRODUCTION;134
6.7.2;ENVIRONMENTAL FACTORS AS SIGNALS;134
6.7.3;REGULATION OF PROTEIN SYNTHESIS;135
6.7.4;INTERMEDIARY METABOLISM;136
6.7.5;CONTROL OF PHOTODESTRUCTIVE REACTIONS;136
6.7.6;HORMONAL REGULATION;136
6.7.7;REFERENCES;137
6.8;Chapter 8. Environmental Control for Plant Growth in Plant Factory Operation and Greenhouse
Management from Physiological Viewpoint;138
6.8.1;INTRODUCTION;138
6.8.2;THEORY;138
6.8.3;MATERIALS AND METHODS;139
6.8.4;RESULTS;140
6.8.5;DISCUSSION;142
6.8.6;CONCLUSION;143
6.8.7;REFERENCES;143
6.9;Chapter 9. Micropropagation by Nutrient Mist Supply: Effects of a Mist Supply Period on Potato Plantlet Growth;144
6.9.1;INTRODUCTION;144
6.9.2;MATERIALS AND METHODS;145
6.9.3;RESULTS AND DISCUSSION;146
6.9.4;CONCLUSION;148
6.9.5;REFERENCES;148
6.10;Chapter 10. "Roots Dividing Method" for Nutrient Supply in Soilless Culture;150
6.10.1;INTRODUCTION;150
6.10.2;MATERIALS AND METHODS;151
6.10.3;RESULTS;151
6.10.4;DISCUSSION;151
6.10.5;CONCLUSION;152
6.10.6;REFERENCES;152
6.11;Chapter 11. An Environmental Control System for Growing Plants Under Low Total Pressures;154
6.11.1;INTRODUCTION;154
6.11.2;CONSTRUCTION OF AN ENVIRONMENTAL CONTROL SYSTEM;155
6.11.3;CONTROLS OF ENVIRONMENTAL FACTORS;155
6.11.4;OPERATING TEST;156
6.11.5;MEASUREMENT OF PHOTOSYNTHETIC RATE OF SPINACH;157
6.11.6;CONCLUSION;157
6.11.7;REFERENCES;157
6.12;Chapter 12. Application of Fuzzy Logic and Neural Network to the Process Control of Solution pH in
Deep Hydroponic Culture;160
6.12.1;INTRODUCTION;160
6.12.2;MATERIALS AND METHODS;161
6.12.3;RESULTS AND DISCUSSION;162
6.12.4;CONCLUSION;164
6.12.5;REFERENCES;165
6.13;Chapter 13. Root Temperature Effect on Hydraulic Characteristics of Roots in Hydroponics;166
6.13.1;INTRODUCTION;166
6.13.2;MATERIALS AND METHODS;166
6.13.3;RESULTS AND DISCUSSION;168
6.13.4;CONCLUSIONS;171
6.13.5;REFERENCES;171
6.14;Chapter 14. Development of TS-style Plant Factory;172
6.14.1;INTRODUCTION;172
6.14.2;STRUCTURE OF SYSTEM;172
6.14.3;CULTURING PROCEDURE;173
6.14.4;EVALUATION OF FINAL PRODUCT;174
6.14.5;PRESENT CONDITIONS;174
6.14.6;CONCLUSION;175
6.14.7;REFERENCES;176
7;PART III: POST-HARVEST TECHNOLOGY;178
7.1;Chapter 1. Classification of Apples with a Neural Network Based Classifier;178
7.1.1;1. INTRODUCTION;178
7.1.2;2. THE CLASSIFICATION PROBLEM;179
7.1.3;3. THE COLOR FEATURES;179
7.1.4;4. THE NEURAL NETWORK CLASSIFIER;180
7.1.5;5. RESULTS;180
7.1.6;6. DISCUSSION;181
7.1.7;REFERENCES;181
7.2;Chapter 2. Control of Integrated Farm Energy and Technology System;184
7.2.1;INTRODUCTION;184
7.2.2;LAYOUT OF A FARM ENERGY/ TECHNOLOGY SYSTEM;184
7.2.3;DETERMINATION OF OPERATION MODES;185
7.2.4;THE OPERATIONAL CONDITION OF SUBSYSTEM;186
7.2.5;CONTROL STRATEGY OF OPERATION MODES;186
7.2.6;CONCLUSIONS;188
7.2.7;REFERENCES;188
7.3;Chapter 3. Crack Evaluation of Rice by Computer Vision System;190
7.3.1;INTRODUCTION;190
7.3.2;OBJECTIVES;191
7.3.3;SYSTEM DESCRIPTION;191
7.3.4;PROCEDURE;191
7.3.5;RESULTS AND DISCUSSION;194
7.3.6;CONCLUSION;195
7.3.7;REFERENCES;195
7.4;Chapter 4. Modelling of Deep-bed Grain Drying;196
7.4.1;INTRODUCTION;196
7.4.2;EQUIPMENT AND PROCEDURE;197
7.4.3;RESULT AND DISCUSSION OF THIN-LAYER;197
7.4.4;TWO-TERM EXPONENTIAL MODEL;197
7.4.5;THE STATE EQUATION OF THIN-LAYER DRYING PROCESS;199
7.4.6;CONCLUSION;201
7.4.7;NOMENCLATURE;201
7.4.8;REFERENCES;201
7.5;Chapter 5. Quality Evaluation of Rice and Coffee Grains by Using Near-infrared Rays;202
7.5.1;INTRODUCTION;202
7.5.2;SYSTEM FOR QUALITY EVALUATION;202
7.5.3;APPLICATION OF FUZZY THEORY;205
7.5.4;APPLICATION OF NEURAL NETWORK;206
7.5.5;CONCLUSION;207
7.5.6;REFERENCE;207
7.6;Chapter 6. Quality Evaluation of Artificially Dried Rice by Tastemeter;208
7.6.1;INTRODUCTION;208
7.6.2;METHODOLOGY;209
7.6.3;RESULTS AND DISCUSSION;210
7.6.4;CONCLUSIONS;213
7.6.5;REFERENCES;213
7.7;Chapter 7. IYOKAN (Citrus iyo hort. ex Tanaka) Storage House with Air Circulating Unit;214
7.7.1;INTRODUCTION;214
7.7.2;MATERIALS, METHODS AND EQUIPMENT;215
7.7.3;RESULTS AND DISCUSSION;216
7.7.4;REFERENCES;219
8;PART IV: ROBOTICS;220
8.1;Chapter 1. Mechanical Weed Control in Sugar Beet Growing: The Detection of a Plant in a Row;220
8.1.1;INTRODUCTION;220
8.1.2;A MODEL OF A ROW OF SUGAR BEET WITH WEED;220
8.1.3;AUTOCORRELATION;221
8.1.4;FOURIER TRANSFORMATION;221
8.1.5;EXPERIMENTS;222
8.1.6;CONCLUSIONS AND REMARKS;224
8.1.7;ACKNOWLEDGEMENTS;224
8.1.8;REFERENCES;224
8.2;Chapter 2. Automated Plant Handling and Processing in a Robotic Workcell;226
8.2.1;INTRODUCTION;226
8.2.2;MACHINE VISION CLASSIFICATION;227
8.2.3;ROBOTIC PROCESSING STRATEGY;229
8.2.4;ROBOTIC HANDLING;229
8.2.5;SUMMARY;231
8.2.6;ACKNOWLEDGEMENTS;231
8.2.7;REFERENCES;231
8.3;Chapter 3. Automatic Guidance of Farm Vehicles;232
8.3.1;INTRODUCTION;232
8.3.2;PROCESS MODELING;233
8.3.3;CONTROLLER DESIGN;235
8.3.4;FIELD EXPERIMENTS;236
8.3.5;CONCLUSIONS;236
8.3.6;ACKNOWLEDGEMENTS;236
8.3.7;REFERENCES;236
8.4;Chapter 4. Robot for Masspropagation;238
8.4.1;INTRODUCTION;238
8.4.2;PLANTLET PRODUCTION BY ROBOTS;239
8.4.3;RECOGNIZING PLANTLET PROFILE;242
8.4.4;CONCLUSIONS;243
8.4.5;REFERENCE;243
8.5;Chapter 5. Discriminating Robot System for Carnation Seedling with Fuzzy Logic;244
8.5.1;INTRODUCTION;244
8.5.2;MASS PRODUCTION SYSTEM FOR A MICRO-PROPAGATED PLANT;244
8.5.3;SYSTEM CONFIGURATION OF A DISCRIMINATING ROBOT;245
8.5.4;A SCHEME OF DISCRIMINATING METHOD;245
8.5.5;METHOD OF FEATURES EXTRACTION;246
8.5.6;FUZZY MATCHING AND REAL-TIME EVALUATION WITH FUZZY INTEGRAL;246
8.5.7;CONCLUSION;248
8.5.8;ACKOWLEDGEMENT;248
8.5.9;REFERENCE;248
8.6;Chapter 6. Development of the Electric Driven Automatic Guided Vehicle for Use in Greenhouses and its Travelling Performance;250
8.6.1;INTRODUCTION;250
8.6.2;OUTLINE OF THE PROTOTYPE VEHICLE WHICH TRAVELS ALONG RIDGES FURROWS IN GREENHOUSES;250
8.6.3;OUTLINE OF THE PROTOTYPE VEHICLE WHICH TRAVELS ALONG WATER CULTURE BED ROWS IN GREENHOUSES;253
8.6.4;CONCLUSIONS;255
8.6.5;REFERENCES;255
8.7;Chapter 7. Study on Grape Harvesting Robot;256
8.7.1;INTRODUCTION;256
8.7.2;GRAPEHARVESTING ROBOT AND EXPERIMENTAL METHOD;256
8.7.3;EXPERIMENTAL RESULTS;258
8.7.4;CONCLUSION;259
8.7.5;REFERENCES;259
9;PART VI: INFORMATION, COMPUTERS AND AI;260
9.1;Chapter 1. Computer Applications in Agriculture and Horticulture: A View;260
9.1.1;INTRODUCTION;260
9.1.2;IMAGE ANALYSIS;260
9.1.3;CROP MODELS AND OPTIMISATION;261
9.1.4;INFORMATION TECHNOLOGY ON FARMS;262
9.1.5;CONCLUSION;263
9.1.6;REFERENCES;263
9.2;Chapter 2. Knowledge Acquisition and Learning for Expert Systems: Research Activities in Japan;266
9.2.1;1 Introduction;266
9.2.2;2 Knowledge acquisition support systems;266
9.2.3;3 Knowledge compilation;267
9.2.4;4 Machine learning;268
9.2.5;5 Case-Based Reasoning;270
9.2.6;6 Concluding remarks;270
9.2.7;References;271
9.3;Chapter 3. Information Technology and Industrial Automation Trends in Agriculture;272
9.3.1;INTRODUCTION;272
9.3.2;TRENDS IN IT;273
9.3.3;TRENDS IN AGRICULTURAL PRODUCTION;273
9.3.4;OBSTACLES;275
9.3.5;CONCLUSIONS;275
9.3.6;REFERENCES;276
9.4;Chapter 4. Analysis of Knowledge Involved in Greenhouse Climate Management - Application to the
Determination of Daily Setpoints for a Tomato Crop;278
9.4.1;INTRODUCTION;278
9.4.2;BASIC KNOWLEDGE INVOLVED IN THE DETERMINATION OF CLIMATIC SETPOINTS;279
9.4.3;STRUCTURE OF THE DECISION PROCESS AND USE OF RESERVOIR CAPABILITIES;281
9.4.4;CONCLUDING REMARKS;282
9.4.5;Acknowledgements;283
9.4.6;REFERENCES;283
9.5;Chapter 5. Determination of Climatic Setpoints by Constraint Satisfaction;284
9.5.1;1 INTRODUCTION;284
9.5.2;2 AN ARTIFICIAL INTELLIGENCE APPROACH;285
9.5.3;3 KNOWLEDGE REPRESENTATION;285
9.5.4;4 RESOLUTION PROCESS;286
9.5.5;5 CONCLUDING REMARKS;288
9.5.6;Acknowledgements;288
9.5.7;REFERENCES;288
9.6;Chapter 6. An Object-oriented Environmental Control Model in Protected Cultivation;290
9.6.1;INTRODUCTION;290
9.6.2;OBJECT-ORIENTED MODEL AND PROTOTYPE SYSTEM;290
9.6.3;RESULTS AND DISCUSSION;291
9.6.4;CONCLUSION;291
9.6.5;REFERENCES;291
9.7;Chapter 7. Development of a Real Computer Integrated Cultivation Support System;294
9.7.1;INTRODUCTION;294
9.7.2;THE TOTAL SYSTEM DESIGN;294
9.7.3;CURRENT STATUS OF OUR WORK;296
9.7.4;CONCLUSION;297
9.7.5;REFERENCES;297
9.8;Chapter 8. Identification of Water and Nutrient Supply to Hydroponic Tomato Plants by Using Neural Nets;298
9.8.1;INTRODUCTION;298
9.8.2;METHOD;299
9.8.3;RESULTS AND DISCUSSION;299
9.8.4;CONCLUSION;300
9.8.5;ACKNOWLEGEMENTS;300
9.8.6;REFERENCES;300
9.9;Chapter 9. A Time-continuous Quantitative Plant Growth Model Based on Neural Networks and Lotka-Volterra Equations;302
9.9.1;INTRODUCTION;302
9.9.2;DERIVIATION FROM LOTKAVOLTERRA EQUATIONS;303
9.9.3;A PLANT GROWTH MODEL EXTENED FOR ENVIRONMENTAL FACTORS;304
9.9.4;COMPARIOSN OF NEURAL NETWORK MODEL AND LOTKA-VOLTERRA MODEL WITH AN EXAMPLE;305
9.9.5;AN ALGORITHM TO ESTIMATE UNKNOWN PARAMETERS;306
9.9.6;DISCUSSION;306
9.9.7;REFERRENCE;307
9.10;Chapter 10. Agriculture Information Network Trend for the 21st Century;308
9.10.1;PRESENT CONDITION OF HORTICULTURE SYSTEMS OF MANDARIN ORANGE GREENHOUSE;308
9.10.2;OUTLINE OF THE HIGH-TECH MANDARIN ORANGE CULTIVATION;308
9.10.3;FIELD TEST RESULTS;311
9.10.4;GREENHOUSE NETWORKS;312
9.11;Chapter 11. Computer Support System for Tomato Cultivation in Plant Growth Factory;314
9.11.1;INTRODUCTION;314
9.11.2;MATERIALS AND METHODS;314
9.11.3;RESULTS;316
9.11.4;DISCUSSION;319
9.11.5;CONCLUSION;319
9.11.6;REFERENCES;319
10;PART VII: MODELS AND CONTROL IN AGRICULTURE AND HORTICULTURE;320
10.1;Chapter 1. Identification, Estimation and Control of Glasshouse Systems;320
10.1.1;INTRODUCTION;320
10.1.2;TF MODELS IN THE z1 AND OPERATORS;321
10.1.3;MODEL IDENTIFICATION AND PARAMETER ESTIMATION;321
10.1.4;PIP CONTROL DESIGN FOR THE z'1 MODEL OPERATOR;323
10.1.5;PIP CONTROL DESIGN FOR THE ä OPERATOR MODEL;324
10.1.6;THE TDC COMPUTER AIDED CONTROL SYSTEM DESIGN {CACSD) PACKAGE;325
10.1.7;A PRACTICAL EXAMPLE: OPTIMAL PIP CONTROL OF A PILOT SCALE NFT FLOW SYSTEM;326
10.1.8;CONCLUSIONS;327
10.1.9;ACKNOWLEDGEMENTS;327
10.1.10;REFERENCES;327
10.2;Chapter 2. Application of Signal Analysis and Nonlinear System Identification Methods to Modelling Dry
Matter Production in Winter Wheat;330
10.2.1;Introduction;330
10.2.2;Dry Matter Production;330
10.2.3;Mathematical Strategy;330
10.2.4;Data Structure;331
10.2.5;Pattern Representation;331
10.2.6;Model of Dry Hatter Production;332
10.2.7;System Identification;332
10.2.8;Conclusion;333
10.2.9;Acknowledgements;333
10.2.10;References;333
10.3;Chapter 3. Process Identification, A Markov Parameter Approach;334
10.3.1;INTRODUCTION;334
10.3.2;A MARKOV PARAMETER BASED IDENTIFICATION STRATEGY;335
10.3.3;SOME PROPERTIES OF THE VARIOUS MODELS;337
10.3.4;AN APPLICATION;338
10.3.5;CONCLUSIONS;338
10.3.6;REFERENCES;338
10.4;Chapter 4. Interactive Decision Support System for Multiobjective Programming in Agriculture;342
10.4.1;INTRODUCTION;342
10.4.2;MATHEMATICAL MODEL;342
10.4.3;PARAMETER ESTIMATION;343
10.4.4;MULTIOBJECTIVE PROGRAMMING;344
10.4.5;CONCLUSIONS;347
10.4.6;REFERENCES;347
10.5;Chapter 5. Mathematical Simulation of the Broiler Production - A Tool for Model Aided Control of the Process;348
10.5.1;PROBLEM FORMULATION;348
10.5.2;MODEL DESCRIPTION;349
10.5.3;References;354
10.6;Chapter 6. Kaiman Filter Neuro-computing for Biological System Models Using Neural Networks;356
10.6.1;INTRODUCTION;356
10.6.2;NEURON TRAINING;356
10.6.3;KALMAN FILTER;357
10.6.4;NUMERICAL EXPERIMENT;358
10.6.5;RESULTS OF NUMERICAL TEST;358
10.6.6;GROWTH MODEL OF RADISH SPROUTS;359
10.6.7;CONCLUSIONS;360
10.6.8;REFERENCES;361
11;PART VIII: MEASUREMENTS IN CONTROLLED SYSTEMS;320
11.1;Chapter 1. Sensors and Intelligent Sensing Systems;362
11.1.1;INTRODUCTION;362
11.1.2;MEASUREMENTS, CONTROL AND MAN-MACHINE COMMUNICATIONS;362
11.1.3;NEEDS FOR PRESENT SENSOR TECHNOLOGY;363
11.1.4;STRUCTURE OF INTELLIGENT SENSING SYSTEMS;363
11.1.5;ROLES OF INTELLIGENCE IN SENSORS;364
11.1.6;ROLES OF INTELLIGENCE IN MIDDLE LAYER;364
11.1.7;APPROACHES TO REALIZATION OF SENSOR INTELLIGENCE;365
11.1.8;CONCLUSIONS;366
11.1.9;REFERENCES;366
11.2;Chapter 2. Development of an Ion Controlled Feeding Method in Hydroponics;368
11.2.1;INTRODUCTION;368
11.2.2;MATERIALS AND METHODS;369
11.2.3;RESULTS AND DISCUSSION;371
11.2.4;CONCLUSION;372
11.2.5;REFERENCE;372
11.3;Chapter 3. An Isfet-based Nutrient Sensor for Rockwool Culture;374
11.3.1;INTRODUCTION;374
11.3.2;EXPERIMENTS;375
11.3.3;RESULTS AND DISCUSSION;376
11.3.4;CONCLUSION;378
11.3.5;ACKNOWLEDGEMENTS;379
11.3.6;REFERENCES;379
11.4;Chapter 4. Dynamics of Plant Water Relations as Affected by Evaporative Demand;380
11.4.1;INTRODUCTION;380
11.4.2;EVAPOLATIVE DEMAND;380
11.4.3;TRANSPIRATION STREAM;381
11.4.4;PLANT RESPONSES TO EVAPORATIVE DEMAND;383
11.4.5;CONCLUSION;385
11.4.6;REFERENCES;385
11.5;Chapter 5. Measurement of Bioelectric Potential on the Surface of Spinach Lamina;386
11.5.1;INTRODUCTION;386
11.5.2;MATERIAL AND METHOD;386
11.5.3;RESULTS AND EVALUATION;387
11.5.4;CONCLUSION;391
11.5.5;REFERENCES;391
11.6;Chapter 6. Measurement of Plant Physiological Information for the Plant Factory;392
11.6.1;INTRODUCTION;392
11.6.2;METHHODS AND APPARATUS;392
11.6.3;RESULTS AND DISCUSSION;393
11.6.4;CONCLUSIONS;395
11.6.5;REFERENCE;395
11.7;Chapter 7. Image Diagnosis of Photosynthesis in Water-deficit Plants;396
11.7.1;INTRODUCTION;396
11.7.2;CHLOROPHYLL a FLUORESCENCE;396
11.7.3;IMAGE INSTRUMENTATION SYSTEM;397
11.7.4;RESPONSES OF CFI TO WATER DEFICIT;398
11.7.5;CONCLUSION;400
11.7.6;REFERENCES;400
11.8;Chapter 8. Identification of the Water Status of the Plant - Identification of AR Model;402
11.8.1;INTRODUCTION;402
11.8.2;RESULT AND DISCUSSION;405
11.8.3;Conclusion;406
11.8.4;REFERENCES;406
11.9;Chapter 9. Measurement of Elongation Rate of Plant;408
11.9.1;INTRODUCTION;408
11.9.2;FORMULATION;409
11.9.3;SYSTEM DESCRIPTION;409
11.9.4;ALGORITHM;411
11.9.5;RESULTS AND DISCUSSION;412
11.9.6;CONCLUSION;413
11.9.7;REFERENCE;413
11.10;Chapter 10. Distribution of Electric Potential of Plant Surface Measured by New Potential Meter;414
11.10.1;INTRODUCTION;414
11.10.2;NEW DC AMPLIFIER USING MOSFET;415
11.10.3;THE FREQUENCY RESPONSE BY CHANGING VOLTAGE OF SUBSTRATE OF MOSFET;416
11.10.4;MEASUREMENT OF ELECTRIC POTENTIAL ON SURFACE OF PLANT;417
11.10.5;CONCLUSION;418
11.10.6;REFERENCES;419
11.11;Chapter 11. Application of Image Processing to Measurement of Total Length in Root System;420
11.11.1;INTRODUCTION;420
11.11.2;MATERIALS AND METHODS;420
11.11.3;RESULTS AND DISCUSSION;423
11.11.4;CONCLUSION;423
11.11.5;ACKNOWLEDGEMENT;423
11.11.6;REFERENCES;424
11.12;Chapter 12. Improvement of Tomato Fruit Production by Nutrient Supply Management in Greenhouses;426
11.12.1;INTRODUCTION;426
11.12.2;MATERIALS AND METHODS;426
11.12.3;RESULTS;428
11.12.4;DISCUSSION;430
11.12.5;CONCLUSION;431
11.12.6;REFERENCES;431
11.13;Chapter 13. Development of Ion Sensors for Hydroponics;432
11.13.1;INTRODUCTION;432
11.13.2;APPLICATION CONDITIONS OF COMPONENT SENSOR IN VEGETABLE PLANT;432
11.13.3;MAJOR COMPONENT SENSORS USED IN VEGETABLE PLANT;432
11.13.4;ION SENSORS AND ION MONITOR IN HYDROPONICS;433
11.13.5;HYDROPONIC LIQUID MONITOR IN HYDROPONICS;433
11.13.6;OTHER COMPONENT SENSORS;435
11.13.7;SUMMARY;435
11.14;Chapter 14. Non Dispersive Infrared Gas Analyzer for CO2 Control;436
11.14.1;INTRODUCTION;436
11.14.2;PRINCIPLE OF OPERATION;436
11.14.3;SPECIFICATIONS;437
11.14.4;TYPICAL DATA;437
11.14.5;APPLICATION;437
11.14.6;CONCLUSION;438
11.14.7;REFERENCES;438
12;PART IX: CONTROL IN IRRIGATION SYSTEMS;440
12.1;Chapter 1. Generalized Predictive Control of an Irrigation Canal Reach;440
12.1.1;INTRODUCTION;440
12.1.2;PLANT MODELS;441
12.1.3;GENERALIZED PREDICTIVE CONTROL;442
12.1.4;EXPERIMANTAL RESULTS;443
12.1.5;CONCLUSION;443
12.1.6;AKNOWLEDGEMENTS;444
12.1.7;REFERENCES;444
12.2;Chapter 2. Automation of a Drip Irrigation System;446
12.2.1;INTRODUCTION;446
12.2.2;WHY AUTOMATION IN IRRIGATION NETWORKS;446
12.2.3;DESCRIPTION OF SYSTEM CONSIDERED FOR AUTOMATION;446
12.2.4;SOFTWARE SYSTEM DEVELOPMENT;446
12.2.5;IMPLEMENTATION OF AUTOMATION;447
12.2.6;CONCLUSIONS;448
12.2.7;REFERENCES;448
12.3;Chapter 3. A Short Irrigation Period by Means of Control Technics;452
12.3.1;INTRODUCTION;452
12.3.2;REGULATION OF IRRIGATION CANALS;452
12.3.3;RESULTS;453
12.3.4;CONCLUSIONS;454
12.3.5;REFERENCES;454
13;Author Index;456
14;Keyword Index;458