E-Book, Englisch, 580 Seiten
Di / Kerns Drug-Like Properties
2. Auflage 2015
ISBN: 978-0-12-801322-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Concepts, Structure Design and Methods from ADME to Toxicity Optimization
E-Book, Englisch, 580 Seiten
ISBN: 978-0-12-801322-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Li Di is an Associate Research Fellow at Pfizer, USA
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Drug-Like Properties: Concepts, Structure, Design, and Methods from ADME to Toxicity Optimization;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;20
6.1;Preface to Second Edition;20
6.2;Preface to First Edition;20
7;Chapter 1: Introduction;22
7.1;1.1. Drug-like Properties in Drug Discovery;22
7.2;1.2. Purpose of This Book;23
7.3;Problems;23
7.4;References;24
8;Chapter 2: Benefits of Property Assessment and Good Drug-Like Properties;26
8.1;2.1. Introduction;26
8.2;2.2. Discovery Scientists Optimize Many Properties;26
8.3;2.3. Introduction to the Drug Discovery and Development Process;27
8.4;2.4. Benefits of Good Drug-like Properties;29
8.4.1;2.4.1. Reduced Development Attrition;29
8.4.2;2.4.2. More Efficient Drug Discovery;29
8.4.3;2.4.3. More Efficient Drug Development;30
8.4.4;2.4.4. Higher Patient Compliance;30
8.4.5;2.4.5. Improved Biological Research in Drug Discovery;30
8.4.6;2.4.6. Enabled Partnerships for Drug Development;31
8.4.7;2.4.7. Human Modeling and Clinical Planning;31
8.4.8;2.4.8. Balance of Properties and Activity;31
8.5;2.5. Property Profiling in Drug Discovery;33
8.6;2.6. Drug-like Property Optimization in Drug Discovery;33
8.7;Problems;33
8.8;References;34
9;Chapter 3: In Vivo Environments Affect Drug Exposure;36
9.1;3.1. Introduction;36
9.2;3.2. Drug Dosing;37
9.3;3.3. Stomach;37
9.3.1;3.3.1. Gastric Acidic Degradation;38
9.4;3.4. Intestinal Environment;38
9.4.1;3.4.1. Dissolution Rate;40
9.4.2;3.4.2. Solubility;40
9.4.3;3.4.3. Permeability;40
9.4.4;3.4.4. Intestinal Metabolism;42
9.4.5;3.4.5. Intestinal Enzymatic Hydrolysis;42
9.4.6;3.4.6. Absorption Enhancement in the Intestine;43
9.5;3.5. Bloodstream;43
9.5.1;3.5.1. Plasma Enzyme Hydrolysis;44
9.5.2;3.5.2. Plasma Protein Binding;44
9.5.3;3.5.3. Red Blood Cell Binding;44
9.6;3.6. Liver;44
9.6.1;3.6.1. Permeation into and out of Hepatocytes;45
9.6.2;3.6.2. Hepatic Metabolism;45
9.6.3;3.6.3. Biliary Extraction;45
9.7;3.7. Kidney;45
9.8;3.8. Blood-Tissue Barriers;46
9.9;3.9. Tissue Distribution;47
9.9.1;3.9.1. Nonspecific Binding in Tissue;47
9.10;3.10. Consequences of Chirality;47
9.11;3.11. Overview of in vivo Challenges to Drug Exposure;48
9.12;Problems;48
9.13;References;49
10;Chapter 4: Prediction Rules for Rapid Property Profiling from Structure;50
10.1;4.1. Introduction;50
10.2;4.2. General Concepts for Prediction Rules;50
10.3;4.3. Rule of 5;51
10.4;4.4. Veber Rules;52
10.5;4.5. Waring Rules;53
10.6;4.6. Golden Triangle;53
10.7;4.7. Other Predictive Rules;54
10.8;4.8. Application of Rules for Compound Assessment;56
10.9;4.9. Applications of Predictive Rules;57
10.10;Problems;57
10.11;References;59
11;Chapter 5: Lipophilicity;60
11.1;5.1. Lipophilicity Fundamentals;60
11.2;5.2. Lipophilicity Effects;61
11.3;5.3. Lipophilicity Case Studies and Structure Modification;63
11.3.1;5.3.1. Lipophilicity Modification for Biological Activity;63
11.3.2;5.3.2. Lipophilicity Modification for Pharmacokinetics;64
11.3.3;5.3.3. Lipophilicity Modification for Toxicity;68
11.4;Problems;70
11.5;References;24
12;Chapter 6: pKa;72
12.1;6.1. pKa Fundamentals;72
12.2;6.2. pKa Effects;73
12.2.1;6.2.1. pKa Affects Efficacy;73
12.2.2;6.2.2. pKa Affects Pharmacokinetics;73
12.2.3;6.2.3. pKa Affects Toxicity;74
12.3;6.3. pKa Case Studies;74
12.3.1;6.3.1. pKa and Activity Examples;74
12.3.2;6.3.2. pKa and Pharmacokinetics Examples;75
12.4;6.4. Structure Modification Strategies for pKa;77
12.5;Problems;80
12.6;References;80
13;Chapter 7: Solubility;82
13.1;7.1. Introduction;82
13.2;7.2. Solubility Fundamentals;82
13.2.1;7.2.1. Solubility Varies with Compound Structure, Form, and Solution Conditions;82
13.2.2;7.2.2. Dissolution Rate;83
13.2.3;7.2.3. Structural Properties Affect Solubility;83
13.2.3.1;7.2.3.1. Lipophilicity and Crystal Intermolecular Forces Affect Solubility;83
13.2.3.2;7.2.3.2. Ionizability Greatly Affects Solubility;84
13.2.4;7.2.4. Kinetic and Thermodynamic Solubility;85
13.2.5;7.2.5. Consequences of Chirality on Solubility;87
13.3;7.3. Effects of Solubility;87
13.3.1;7.3.1. Low Solubility Affects In Vitro Assays;87
13.3.2;7.3.2. Low Solubility Limits Absorption and Causes Low Oral Bioavailability;87
13.3.3;7.3.3. Good Solubility is Essential for IV Formulation;89
13.3.4;7.3.4. How Much Solubility is Needed?;90
13.3.4.1;7.3.4.1. Maximum Absorbable Dose;90
13.3.4.2;7.3.4.2. Biopharmaceutics Classification System;92
13.3.5;7.3.5. Molecular Properties for Solubility and Permeability Are Often Opposed;94
13.4;7.4. Effects of Physiology on Solubility and Absorption;94
13.4.1;7.4.1. Physiology of the Gastrointestinal Tract;95
13.4.2;7.4.2. Species Differences in the GI Tract;95
13.4.3;7.4.3. Food Effect;96
13.5;7.5. Structure Modification Strategies to Improve Solubility;98
13.5.1;7.5.1. Add Ionizable Groups;99
13.5.2;7.5.2. Reduce log P;101
13.5.3;7.5.3. Add Hydrogen Bonding;102
13.5.4;7.5.4. Add Polar Group;103
13.5.5;7.5.5. Reduce MW;104
13.5.6;7.5.6. Out-of-Plane Substitution;104
13.5.7;7.5.7. Construct a Prodrug;106
13.6;7.6. Strategies to Improve Dissolution Rate;106
13.6.1;7.6.1. Reduce Particle Size;106
13.6.2;7.6.2. Prepare an Oral Solution;107
13.6.3;7.6.3. Formulate with Surfactants;107
13.6.4;7.6.4. Prepare a Salt Form;107
13.7;7.7. Salt Form;107
13.7.1;7.7.1. Solubility of Salts;108
13.7.2;7.7.2. Effect of Salt Form on Absorption and Oral Bioavailability;109
13.7.3;7.7.3. Salt Selection;110
13.7.4;7.7.4. Precautions of Using Salt Forms;111
13.8;7.8. Strategy for Solubility During Drug Discovery;111
13.9;Problems;112
13.10;References;113
14;Chapter 8: Permeability;116
14.1;8.1. Introduction;116
14.2;8.2. Permeability Fundamentals;116
14.2.1;8.2.1. Passive Transcellular Diffusion Permeability;117
14.2.2;8.2.2. Efflux Transport Permeability;120
14.2.3;8.2.3. Uptake Transport Permeability;121
14.2.4;8.2.4. Paracellular Permeability;121
14.2.5;8.2.5. Endocytosis Permeability;121
14.2.6;8.2.6. Net Permeability;121
14.3;8.3. Permeability Effects;122
14.3.1;8.3.1. Effect of Permeability on Absorption and Bioavailability;122
14.3.2;8.3.2. Effect of Permeability on Cell-Based Activity Assays;122
14.3.3;8.3.3. Permeation is Involved in Hepatic Clearance;123
14.3.4;8.3.4. Permeation is Involved in Renal Clearance;123
14.3.5;8.3.5. Permeation is Involved in Brain Efficacy;124
14.3.6;8.3.6. Permeation into Tissue Cells is Involved in Efficacy;124
14.4;8.4. Permeability Structure Modification Strategies;124
14.4.1;8.4.1. Replace Ionizable Group with Nonionizable Group;124
14.4.2;8.4.2. Add Lipophilicity;125
14.4.3;8.4.3. Isosteric Replacement of Polar Groups;125
14.4.4;8.4.4. Esterify Carboxylic Acid to Form Prodrug;127
14.4.5;8.4.5. Reduce Hydrogen Bonding and Polarity;127
14.4.6;8.4.6. Reduce Molecular Size;128
14.4.7;8.4.7. Add Nonpolar Side Chain;129
14.4.8;8.4.8. Prodrug;129
14.5;8.5. Strategy for Permeability;130
14.6;Problems;130
14.7;References;131
15;Chapter 9: Transporters;134
15.1;9.1. Introduction;134
15.2;9.2. Transporter Fundamentals;134
15.3;9.3. Transporter Effects;137
15.3.1;9.3.1. Transporters in Intestinal Epithelial Cells;140
15.3.2;9.3.2. Transporters in Liver Hepatocytes;140
15.3.3;9.3.3. Transporters in Kidney Epithelial Cells;140
15.3.4;9.3.4. Transporters in BBB Endothelial Cells;140
15.4;9.4. Efflux Transporters;140
15.4.1;9.4.1. P-glycoprotein (MDR1, ABCB1) [Efflux];141
15.4.1.1;9.4.1.1. Rules for P-gp Efflux Substrates;142
15.4.1.2;9.4.1.2. Case Study of P-gp Efflux;142
15.4.1.3;9.4.1.3. Structure Modification Strategies to Reduce P-gp Efflux;143
15.4.2;9.4.2. Breast Cancer Resistance Protein (BCRP, ABCG2) [Efflux];145
15.4.3;9.4.3. Multidrug Resistance Protein 2 (MRP2, ABCC2) [Efflux];146
15.4.4;9.4.4. Efflux Transporters in the BBB;148
15.5;9.5. Uptake Transporters;148
15.5.1;9.5.1. Organic Anion Transporting Polypeptide 1A2 for Brain Uptake;148
15.5.2;9.5.2. Organic Anion Transporting Polypeptide 1B1 and 1B3 for Liver Targeting and Clearance Prediction;148
15.5.3;9.5.3. Peptide Transporter 1 (PEPT1) for Intestine Absorption;150
15.5.4;9.5.4. Large Neutral Amino Acid Transporter (LAT1) for Brain Uptake;152
15.5.5;9.5.5. Monocarboxylate Transporter 1 (MCT1) for Oral Absorption;152
15.5.6;9.5.6. Organic Anion Transporters 1 and 3 for Renal Uptake;154
15.5.7;9.5.7. Organic Cation Transporter 2 (OCT2) for Renal Uptake;155
15.5.8;9.5.8. MATE1 and MATE2-K;156
15.5.9;9.5.9. Other Uptake Transporters;156
15.5.10;9.5.10. Structure Modification Strategies for Uptake Transporters;157
15.6;Problems;157
15.7;References;158
16;Chapter 10: Blood-Brain Barrier;162
16.1;10.1. Introduction;162
16.2;10.2. Fundamentals of Brain Exposure;162
16.2.1;10.2.1. Unbound Drug Brain Concentration, Cb,u, and AUCb,u;163
16.2.2;10.2.2. Unbound Brain-Blood Equilibrium Distribution, Kp,uu;163
16.2.3;10.2.3. BBB Permeation Affects Cb,u and Kp,uu;164
16.2.3.1;10.2.3.1. Rate and Extent of Brain Exposure;165
16.2.3.2;10.2.3.2. BBB Efflux Transport;166
16.2.3.3;10.2.3.3. Passive Transcellular Diffusion of BBB Affects Cb,u;166
16.2.3.4;10.2.3.4. Uptake Transport of BBB Affects Cb,u;166
16.2.3.5;10.2.3.5. No Fenestrations in BBB;167
16.2.3.6;10.2.3.6. No Paracellular or Pinocytosis Permeability of BBB;167
16.2.4;10.2.4. ADME Processes Affect Cb,u;167
16.2.5;10.2.5. BCSFB and CSF;167
16.2.5.1;10.2.5.1. Brain Exposure via BCSFB;167
16.2.5.2;10.2.5.2. Use of CSF as an ISF Surrogate;167
16.3;10.3. Effects of Brain Exposure on Efficacy and Drug Development;168
16.3.1;10.3.1. Effects of BBB Efflux on Human Efficacy;168
16.3.2;10.3.2. Effects of BBB Efflux on Human Clinical Development;168
16.3.3;10.3.3. Effects of Metabolic Clearance on Efficacy;168
16.3.4;10.3.4. Total Brain Exposure is Not Correlated to Efficacy;168
16.4;10.4. Structure-Passive Transcellular BBB Permeation Relationships;170
16.5;10.5. Structure Modification Strategies to Improve BBB Permeation;171
16.5.1;10.5.1. Reduce P-gp Efflux;172
16.5.2;10.5.2. Reduce Hydrogen Bonds;172
16.5.3;10.5.3. Increase Lipophilicity;172
16.5.4;10.5.4. Reduce Molecular Weight;173
16.5.5;10.5.5. Replace Carboxylic Acid Groups;173
16.5.6;10.5.6. Add an Intramolecular Hydrogen Bond;173
16.5.7;10.5.7. Modify or Select Structures for Affinity to BBB Uptake Transporters;174
16.6;10.6. Applications of Brain Exposure;174
16.6.1;10.6.1. Best Practices for Brain Exposure Assessment;174
16.6.2;10.6.2. Scheme for Assessing Brain Exposure;175
16.6.3;10.6.3. Projecting Human Brain Exposure;175
16.6.4;10.6.4. Selecting Candidates for CNS Drug Development;176
16.6.5;10.6.5. Minimizing Brain Exposure for Peripheral Drugs;176
16.7;Problems;178
16.8;References;179
17;Chapter 11: Metabolic Stability;182
17.1;11.1. Introduction;182
17.2;11.2. Metabolic Stability Fundamentals;183
17.2.1;11.2.1. Phase I Metabolism;184
17.2.2;11.2.2. Phase II Metabolism;188
17.3;11.3. Metabolic Stability Effects;190
17.4;11.4. Structure Modification Strategies for Phase I CYP Metabolic Stability;191
17.4.1;11.4.1. Block Metabolic Site by Adding Fluorine;192
17.4.2;11.4.2. Block Metabolic Site by Adding Other Blocking Groups;194
17.4.3;11.4.3. Remove Labile Functional Group;195
17.4.4;11.4.4. Cyclization;196
17.4.5;11.4.5. Change Ring Size;197
17.4.6;11.4.6. Change Chirality;197
17.4.7;11.4.7. Reduce Lipophilicity;197
17.4.8;11.4.8. Replace Unstable Groups;198
17.5;11.5. Structure Modification Strategies for Phase II Metabolic Stability;199
17.5.1;11.5.1. Introduce Electron-Withdrawing Groups and Steric Hindrance;199
17.5.2;11.5.2. Change Phenolic Hydroxyl to Cyclic Urea or Thiourea;200
17.5.3;11.5.3. Change Phenolic Hydroxyl to Prodrug;200
17.6;11.6. Applications of Metabolic Stability Data;201
17.7;11.7. Consequences of Chirality on Metabolic Stability;204
17.8;11.8. Substrate Specificity of CYP Isozymes;206
17.8.1;11.8.1. CYP1A2 Substrates;206
17.8.2;11.8.2. CYP2D6 Substrates;206
17.8.3;11.8.3. CYP2C9 Substrates;207
17.9;11.9. Aldehyde Oxidase;209
17.10;Problems;212
17.11;References;214
18;Chapter 12: Plasma Stability;216
18.1;12.1. Introduction;216
18.2;12.2. Plasma Stability Fundamentals;216
18.2.1;12.2.1. Consequences of Chirality on Plasma Stability;216
18.3;12.3. Effects of Plasma Instability;217
18.3.1;12.3.1. Pharmacokinetic Effects of Plasma Degradation;217
18.3.2;12.3.2. Degradation of Biological Drugs;217
18.3.3;12.3.3. Bioanalytical Effects of Plasma Degradation;217
18.3.4;12.3.4. Prodrugs and Antedrugs;217
18.4;12.4. Structure Modification Strategies to Improve Plasma Stability;219
18.4.1;12.4.1. Substitute an Amide for an Ester;219
18.4.2;12.4.2. Increase Steric Hindrance;220
18.4.3;12.4.3. Electron-Withdrawing Groups Decrease Plasma Stability for Antedrugs;221
18.4.4;12.4.4. Stabilize Biological Drug Candidates;221
18.5;12.5. Strategies for Plasma Stability;221
18.5.1;12.5.1. Diagnose Poor In Vivo Performance;221
18.5.2;12.5.2. Alert Teams to Plasma Hydrolysis Liability;222
18.5.3;12.5.3. Prioritize Compounds for in vivo Animal Studies;223
18.5.4;12.5.4. Prioritize Synthetic Efforts;224
18.5.5;12.5.5. Screening of Prodrugs;224
18.5.6;12.5.6. Guide Structural Modification;224
18.5.7;12.5.7. Verify the Plasma Storage Stability of Bioanalytical Samples;225
18.6;Problems;226
18.7;References;226
19;Chapter 13: Solution Stability;228
19.1;13.1. Introduction;228
19.2;13.2. Solution Stability Fundamentals;228
19.2.1;13.2.1. Degradation in Stock Solutions;228
19.2.2;13.2.2. Degradation During In Vitro Biological or ADME Assay;229
19.2.3;13.2.3. Degradation During In Vivo PK, Efficacy, and Toxicity Studies;229
19.2.4;13.2.4. Degradation Reactions;229
19.3;13.3. Effects of Solution Instability;230
19.4;13.4. Solution Stability Case Studies;230
19.4.1;13.4.1. pH Stability of a ?-Lactam;230
19.4.2;13.4.2. Selecting Conditions for Purification;230
19.4.3;13.4.3. Diagnose Poor In Vitro Bioassay Performance;231
19.4.4;13.4.4. Prioritize Compounds for In Vivo Animal Studies;232
19.4.5;13.4.5. Structure Elucidation of Degradation Products;232
19.5;13.5. Structure Modification Strategies to Improve Solution Stability;232
19.5.1;13.5.1. Eliminate or Modify the Unstable Group;232
19.5.2;13.5.2. Add an Electron-Withdrawing Group;234
19.5.3;13.5.3. Isosteric Replacement of Labile Functional Group;235
19.5.4;13.5.4. Increase Steric Hindrance;235
19.6;13.6. Applications of Solution Stability in Drug Discovery;236
19.6.1;13.6.1. Obtain an Early Alert About Stability Liabilities;236
19.6.2;13.6.2. Assist Selection of Conditions for Compound Purification Using Knowledge of Instability;236
19.6.3;13.6.3. Develop Structure-Stability Relationships;236
19.6.4;13.6.4. Diagnose Poor In Vitro Bioassay Performance;236
19.6.5;13.6.5. Diagnose Poor In Vivo Performance;236
19.6.6;13.6.6. Prioritize Compounds for In Vivo Animal Studies;236
19.6.7;13.6.7. Elucidate Structures of Degradation Products to Guide Synthetic Optimization;237
19.6.8;13.6.8. Perform Accelerated Stability Studies to Anticipate Development Liabilities;237
19.7;Problems;237
19.8;References;237
20;Chapter 14: Plasma and Tissue Binding;240
20.1;14.1. Introduction;240
20.2;14.2. Drug Binding in Plasma;240
20.3;14.3. Drug Binding in Tissue;243
20.4;14.4. Free Drug Hypothesis;243
20.5;Free Drug Hypothesis;243
20.6;14.5. Pharmacokinetics Principles of Oral Drugs Relevant to Drug Binding;245
20.7;14.6. The Useful Application of fu;245
20.8;14.7. Misconceptions and Unproductive Strategies for PPB;246
20.9;14.8. Best Practices Regarding PPB and Tissue Binding;248
20.10;Problems;248
20.11;References;249
21;Chapter 15: Cytochrome P450 Inhibition;250
21.1;15.1. Introduction;250
21.2;15.2. CYP Inhibition Fundamentals;250
21.2.1;15.2.1. Reversible CYP Inhibition;250
21.2.2;15.2.2. Irreversible CYP Inhibition (Mechanism-Based Inhibition);252
21.3;15.3. Effects of CYP Inhibition;254
21.3.1;15.3.1. Drug Candidate as a Perpetrator of Metabolic Inhibition DDI;254
21.3.2;15.3.2. Drug Candidate as Victim of Metabolic Inhibition;256
21.4;15.4. CYP Inhibition Case Studies;256
21.4.1;15.4.1. Consequences of Chirality on CYP Inhibition;257
21.5;15.5. Structure Modification Strategies to Reduce CYP Inhibition;257
21.6;15.6. Other DDIs;260
21.6.1;15.6.1. Drug Candidate as a Victim or Perpetrator of DDI Inhibition of a Non-CYP Metabolic Enzyme;260
21.6.2;15.6.2. Drug Candidate as a Victim or Perpetrator of DDI of a Transporter;260
21.6.3;15.6.3. Drug Candidate as a Victim or Perpetrator of Metabolic Enzyme Induction;260
21.6.4;15.6.4. DDI Caused by Foods and Dietary Supplements;260
21.7;15.7. Regulatory Guidance on DDI;260
21.8;15.8. Applications of CYP Inhibition;261
21.9;Problems;261
21.10;References;262
22;Chapter 16: hERG Blocking;264
22.1;16.1. Introduction;264
22.2;16.2. hERG Fundamentals;264
22.3;16.3. hERG Blocking Effects;266
22.4;16.4. hERG Blocking SAR;267
22.5;16.5. Structure Modification Strategies for hERG;268
22.6;16.6. Applications of hERG Blocking Assessment;270
22.7;Problems;270
22.8;References;270
23;Chapter 17: Toxicity;272
23.1;17.1. Introduction;272
23.2;17.2. Toxicity Fundamentals;272
23.3;17.3. Toxic Effect Categories;273
23.3.1;17.3.1. On-Target Effects;274
23.3.2;17.3.2. Off-Target Effects;274
23.3.3;17.3.3. Reactive Metabolites;274
23.4;17.4. Examples of Toxicity Effects;277
23.4.1;17.4.1. Metabolic Enzyme Induction;277
23.4.2;17.4.2. Genetic Toxicity and Carcinogenicity;277
23.4.3;17.4.3. Cytotoxicity;277
23.4.4;17.4.4. Teratogenicity;278
23.4.5;17.4.5. Biochemical Profile Changes;278
23.4.6;17.4.6. Phospholipidosis;278
23.5;17.5. In Vivo Toxicity;279
23.6;17.6. Case Studies of Toxicity in Drug Discovery;279
23.7;17.7. Rules for Off-Target Toxicity by Drug Discovery Compounds;280
23.8;17.8. Relationship of Cmax to in vivo Toxicity of Drug Discovery Compounds;280
23.9;17.9. Structure Modification Strategies to Improve Safety;280
23.10;Problems;282
23.11;References;282
24;Chapter 18: Integrity and Purity;284
24.1;18.1. Introduction;284
24.2;18.2. Fundamentals of Integrity and Purity;284
24.3;18.3. Integrity and Purity Effects;284
24.4;18.4. Applications of Integrity and Purity;285
24.4.1;18.4.1. Case Study;286
24.5;Problems;286
24.6;References;286
25;Chapter 19: Pharmacokinetics;288
25.1;19.1. Introduction;288
25.1.1;19.1.1. Reasons to Study PK;288
25.1.2;19.1.2. PK Parameters from Different Dosing Routes;288
25.2;19.2. PK Parameters;289
25.2.1;19.2.1. Volume of Distribution (Vd);289
25.2.2;19.2.2. Area under the Curve (AUC);291
25.2.3;19.2.3. Clearance (CL);292
25.2.4;19.2.4. Half-Life (t½);294
25.2.5;19.2.5. Bioavailability (F);295
25.3;19.3. Tissue Concentration;295
25.4;19.4. Using PK Data in Drug Discovery;295
25.5;19.5. Relationship of PK to PD;297
25.6;19.6. Applications of PK;297
25.7;Problems;301
25.8;References;302
26;Chapter 20: Lead Properties;304
26.1;20.1. Introduction;304
26.2;20.2. Lead-like Properties;304
26.3;20.3. Template Property Conservation;305
26.4;20.4. Including Properties in Hit Triage;305
26.5;20.5. Fragment-based Screening;306
26.6;20.6. Ligand LipophilicITY Efficiency;308
26.7;20.7. Conclusions;309
26.8;Problems;309
26.9;References;310
27;Chapter 21: Strategies for Integrating Drug-Like Properties into Drug Discovery;312
27.1;21.1. Introduction;312
27.2;21.2. Start Assessing Drug Properties Early to Prioritize Compounds and Plan Structure Modifications;312
27.3;21.3. Assess Drug Properties for all New Compounds Rapidly;313
27.4;21.4. Develop Structure-Property Relationships;313
27.5;21.5. Optimize Activity and Properties in Parallel;313
27.6;21.6. Use Single-property Assays to Guide Specific Modifications;313
27.7;21.7. Use Complex Property Methods for Decision-making and Human Modeling;314
27.8;21.8. Apply Property Data to Improve Biological Experiments;314
27.9;21.9. Use Customized Assays to Answer Specific Research Questions;314
27.10;21.10. Diagnose the Root Cause of Inadequate Pharmacokinetics;315
27.11;21.11. Run in vitro Assays Using Human Materials to Predict Human Performance;315
27.12;Problems;315
27.13;References;315
28;Chapter 22: Methods for Profiling Drug-Like Properties: General Concepts;316
28.1;22.1. Introduction;316
28.2;22.2. It is Valuable for Medicinal Chemists to Understand the ADMET Assays and Collaborate with ADMET Scientists;316
28.3;22.3. Choose an Ensemble of Key Properties to Evaluate;316
28.4;22.4. Use Relevant Assay Conditions;316
28.5;22.5. Property Data Should Be Readily Available;316
28.6;22.6. Evaluate the Cost-benefit Ratio for Assays;317
28.7;22.7. Use Well Developed Assays that Are Well Validated;317
28.8;Problems;318
28.9;References;318
29;Chapter 23: Lipophilicity Methods;320
29.1;23.1. In Silico Lipophilicity Methods;320
29.2;23.2. Lipophilicity Methods;322
29.2.1;23.2.1. Scaled-Down Shake Flask Method for Lipophilicity;322
29.2.2;23.2.2. Reversed Phase HPLC Method for Lipophilicity;323
29.2.3;23.2.3. CE Method for Lipophilicity;324
29.3;23.3. In-Depth Lipophilicity Methods;324
29.3.1;23.3.1. Shake Flask Method for Lipophilicity;324
29.3.2;23.3.2. pH-Metric Method for Lipophilicity;325
29.4;Problems;326
29.5;References;326
30;Chapter 24: pKa Methods;328
30.1;24.1. Introduction;328
30.2;24.2. In Silico pKa Methods;328
30.3;24.3. Laboratory pKa Methods;330
30.3.1;24.3.1. 96-Well Microtiter Plate UV Spectroscopy pKa Method;330
30.3.2;24.3.2. Spectral Gradient Analysis Method for pKa;331
30.3.3;24.3.3. Capillary Electrophoresis Method for pKa;332
30.3.4;24.3.4. Definitive pKa Method: pH-Metric;332
30.3.5;24.3.5. Potentiometric Titration Method for pKa;332
30.4;Problems;333
30.5;References;333
31;Chapter 25: Solubility Methods;334
31.1;25.1. Introduction;334
31.2;25.2. Solubility Calculation Estimation;334
31.3;25.3. Software for Solubility;334
31.4;25.4. Kinetic Solubility Methods;335
31.4.1;25.4.1. Direct UV Kinetic Solubility Method;337
31.4.2;25.4.2. Nephelometric Kinetic Solubility Method;338
31.4.3;25.4.3. Turbidimetric Kinetic Solubility Method;338
31.4.4;25.4.4. Pseudokinetic Solubility Method;339
31.5;25.5. Thermodynamic Solubility Methods;339
31.5.1;25.5.1. Equilibrium Shake Flask Thermodynamic Solubility Method;339
31.5.2;25.5.2. Potentiometric Thermodynamic Solubility Method;340
31.5.3;25.5.3. Thermodynamic Solubility in Various Solvents;340
31.6;25.6. Customized Solubility Methods;340
31.7;25.7. Dissolution Rate Measurement;342
31.8;25.8. DMSO Solubility;342
31.9;25.9. Commercial CRO Labs Offering Solubility Measurement;342
31.10;25.10. Strategy for Solubility Measurement;343
31.11;Problems;343
31.12;References;344
32;Chapter 26: Permeability Methods;346
32.1;26.1. Introduction;346
32.2;26.2. Computational Prediction of Permeability;346
32.2.1;26.2.1. Permeability Prediction Using Structural Property Rules;346
32.2.2;26.2.2. Permeability Prediction Using In Silico Methods;346
32.3;26.3. In Vitro Permeability Methods;347
32.3.1;26.3.1. Liposomal Permeability Method;347
32.3.2;26.3.2. IAM High-Performance Liquid Chromatography Permeability Method;347
32.3.3;26.3.3. Caco-2 Monolayer Permeability Method;348
32.3.3.1;26.3.3.1. General Protocol for Monolayer Permeability;349
32.3.3.2;26.3.3.2. Additional Considerations for Caco-2 Studies;350
32.3.4;26.3.4. MDCK Monolayer Permeability Method;352
32.3.4.1;26.3.4.1. MDCKII-LE Monolayer Permeability Method;352
32.3.5;26.3.5. Monolayer Permeability Method with Other Cell Lines;352
32.3.6;26.3.6. PAMPA—Parallel Artificial Membrane Permeability Assay;353
32.3.6.1;26.3.6.1. General Protocol for PAMPA Permeability;353
32.3.6.2;26.3.6.2. Additional Considerations for PAMPA Studies;353
32.3.7;26.3.7. Comparison of Caco-2 and PAMPA Methods;354
32.4;26.4. In-Depth Permeability Methods;355
32.4.1;26.4.1. Ussing Chamber;355
32.4.2;26.4.2. Cannulated In Vivo Hepatic Portal Vein;355
32.4.3;26.4.3. Perfusion In Vivo Methods;355
32.4.4;26.4.4. In Vivo Pharmacokinetics Method;355
32.5;26.5. Applications of Permeability in Drug Discovery;356
32.6;Problems;356
32.7;References;356
33;Chapter 27: Transporter Methods;360
33.1;27.1. Introduction;360
33.2;27.2. In Silico Transporter Methods;360
33.2.1;27.2.1. In Silico Methods for P-gp;360
33.2.2;27.2.2. In Silico Methods for BCRP;360
33.2.3;27.2.3. In Silico Methods for Other Transporters;360
33.3;27.3. In Vitro Transporter Methods;361
33.3.1;27.3.1. Bidirectional Cell Monolayer Transwell Permeability Methods for Transporter Studies;361
33.3.1.1;27.3.1.1. Caco-2 Permeability Method for Transporters;362
33.3.1.2;27.3.1.2. Transfected Cell Line Permeability Method for Transporters;362
33.3.2;27.3.2. Plated Cell Monolayer Uptake Method for Transporters;364
33.3.3;27.3.3. Cell Suspension Oil Spin Method for Transporters;364
33.3.4;27.3.4. Sandwich-Cultured Hepatocyte Method for Transporters;365
33.3.5;27.3.5. Media Loss Method for Transporters;365
33.3.6;27.3.6. Oocyte Uptake Method for Transporters;366
33.3.7;27.3.7. Inverted Vesicle Assay for Transporters;366
33.3.8;27.3.8. ATPase Assay for ABC Transporters;367
33.3.9;27.3.9. Calcein AM Assay for P-gp Inhibitor;368
33.4;27.4. In Vivo Methods for Transporters;369
33.4.1;27.4.1. Genetic Knockout Animal Experiments for Transporters;369
33.4.2;27.4.2. Chemical Knockout Experiments for Transporters;369
33.5;Problems;369
33.6;References;369
34;Chapter 28: Blood-Brain Barrier Methods;372
34.1;28.1. Introduction;372
34.2;28.2. Methods for BBB Permeability;372
34.2.1;28.2.1. Computational and In Silico Methods for BBB Permeability;373
34.2.1.1;28.2.1.1. Computational Methods for BBB Permeability and Brain Exposure;373
34.2.1.2;28.2.1.2. In Silico Classification Methods;373
34.2.1.3;28.2.1.3. QSAR BBB Permeability Methods;373
34.2.1.4;28.2.1.4. Commercial BBB Permeability Software;373
34.2.2;28.2.2. In Vitro Methods for BBB Permeability;374
34.2.2.1;28.2.2.1. In Vitro Physicochemical Methods for BBB Permeability;374
34.2.2.2;28.2.2.2. In Vitro PAMPA-BBB Method for BBB Permeability;375
34.2.2.3;28.2.2.3. In Vitro DeltalogP Method for BBB Permeability;376
34.2.2.4;28.2.2.4. In Vitro IAM HPLC Method for BBB Permeability;376
34.2.2.5;28.2.2.5. In Vitro Surface Activity Method for BBB Permeability;376
34.2.2.6;28.2.2.6. In Vitro Cell Monolayer Methods for BBB Permeability;377
34.2.2.6.1;28.2.2.6.1. In Vitro Microvessel Endothelial Cell Permeability Method for BBB Permeability;377
34.2.2.6.2;28.2.2.6.2. In Vitro Caco-2 Method for BBB Permeability;378
34.2.2.6.3;28.2.2.6.3. In Vitro MDR1-MDCKII Method for BBB Permeability;378
34.2.2.6.4;28.2.2.6.4. In Vitro TR-BBB and TM-BBB Cell Lines for BBB Permeability;378
34.2.3;28.2.3. In Vivo Methods for BBB Permeability;379
34.2.3.1;28.2.3.1. In Situ Brain Perfusion Method for BBB Permeability;379
34.2.3.2;28.2.3.2. In Vivo Brain Uptake Index Method for BBB Permeability;380
34.2.3.3;28.2.3.3. In Vivo Mouse Brain Uptake Method for BBB Permeability and Brain Distribution;380
34.3;28.3. Methods for Brain Binding and Distribution;382
34.3.1;28.3.1. In Silico Methods for Brain Binding;382
34.3.2;28.3.2. In Vitro Methods for Brain Binding;382
34.3.2.1;28.3.2.1. In Vitro Equilibrium Dialysis for Brain Binding;382
34.3.2.2;28.3.2.2. In Vitro Brain Slice Uptake Method for Brain Binding;383
34.3.2.3;28.3.2.3. In Vitro Lipid-coated Bead Method for Brain Binding;383
34.3.2.4;28.3.2.4. In Vitro Ultracentrifugation Brain Homogenate Method for Brain Binding;383
34.3.2.5;28.3.2.5. In Vitro Microemulsion Retention Factor Method for Brain Binding;383
34.3.3;28.3.3. In Vivo Measurement of Brain Distribution;384
34.3.3.1;28.3.3.1. In Vivo General Methodology for NeuroPK Studies;384
34.3.3.1.1;28.3.3.1.1. Effect of Residual Blood in Brain PK Studies;385
34.3.3.2;28.3.3.2. In Vivo NeuroPK with Transporter KO Mice;385
34.3.3.3;28.3.3.3. In Vivo NeuroPK for Cerebrospinal Fluid;385
34.3.3.4;28.3.3.4. In Vivo Microdialysis Method for Brain Distribution;386
34.3.3.5;28.3.3.5. In Vivo Imaging for Brain Distribution;386
34.4;28.4. Applications of BBB Permeation and Brain Distribution Methods;386
34.5;Problems;387
34.6;References;387
35;Chapter 29: Metabolic Stability Methods;392
35.1;29.1. Introduction;392
35.2;29.2. Metabolic Stability Methods;392
35.3;29.3. In Silico Metabolic Stability Methods;393
35.4;29.4. In Vitro Metabolic Stability Methods;393
35.4.1;29.4.1. General Aspects of Metabolic Stability Methods;393
35.4.1.1;29.4.1.1. Metabolic Stability Materials;393
35.4.1.2;29.4.1.2. Detection Methods for Metabolic Stability;396
35.4.2;29.4.2. In Vitro Microsomal Assay for Metabolic Stability;396
35.4.3;29.4.3. In Vitro S9 Assay for Metabolic Stability;401
35.4.4;29.4.4. In Vitro Hepatocytes Assay for Metabolic Stability;401
35.4.5;29.4.5. In Vitro Phase II Assay for Metabolic Stability;401
35.4.6;29.4.6. Metabolic Reaction Phenotyping;402
35.4.7;29.4.7. In Vitro Metabolite Structure Identification;403
35.5;Problems;406
35.6;References;406
36;Chapter 30: Plasma Stability Methods;408
36.1;30.1. Introduction;408
36.2;30.2. General Protocol for in vitro Plasma Stability;408
36.3;30.3. Low-throughput Method for in vitro Plasma Stability;409
36.4;30.4. High-throughput Method for in vitro Plasma Stability;409
36.5;30.5. Structure Elucidation of Plasma Degradation Products;412
36.6;30.6. Strategies for Plasma Stability Measurement;412
36.7;Problems;413
36.8;References;24
37;Chapter 31: Solution Stability Methods;414
37.1;31.1. Introduction;414
37.2;31.2. Methodology for Solution Stability Measurement;414
37.2.1;31.2.1. General Considerations for Drug Discovery Solution Stability Assessment;414
37.2.2;31.2.2. Quenching Problem in Solution Stability Assays;414
37.2.3;31.2.3. An Efficient and Effective Assay Design for Solution Stability;415
37.3;31.3. Method for Solution Stability in Biological Assay Media;416
37.4;31.4. Example Methods from the Literature for pH Solution Stability;416
37.5;31.5. Methods for Solution Stability in Simulated GI Fluids;417
37.6;31.6. Identification of Degradation Products from Solution Stability Assays;418
37.7;31.7. In-depth Solution Stability Assessment in Late Stage Drug Discovery;418
37.8;31.8. Strategy for Solution Stability Assessment;420
37.9;Problems;420
37.10;References;420
38;Chapter 32: CYP Inhibition Methods;422
38.1;32.1. Introduction;422
38.2;32.2. In Silico CYP Inhibition Methods;422
38.3;32.3. In Vitro Reversible CYP Inhibition Methods;422
38.3.1;32.3.1. CYP Enzyme Material for CYP Inhibition Methods;423
38.3.2;32.3.2. Probe Substrate Compounds for CYP Inhibition Methods;423
38.3.3;32.3.3. Measurement Techniques for CYP Inhibition Methods;425
38.3.4;32.3.4. Assay Protocols for Reversible CYP Inhibition Methods;425
38.3.4.1;32.3.4.1. Fluorescent Protocol for Reversible CYP Inhibition;426
38.3.4.2;32.3.4.2. Single Drug Probe Substrate HLM Protocol for Reversible CYP Inhibition;426
38.3.4.3;32.3.4.3. Cocktail Drug Probe Substrate HLM Protocol for Reversible CYP Inhibition;427
38.3.4.4;32.3.4.4. Double Cocktail Assay for Reversible CYP Inhibition;427
38.4;32.4. In Vitro Irreversible (TDI) CYP Inhibition Methods;429
38.4.1;32.4.1. Abbreviated TDI Irreversible CYP Inhibition Protocol;429
38.4.2;32.4.2. IC50 Shift TDI CYP Inhibition Protocol;430
38.4.3;32.4.3. In-Depth TDI CYP Inhibition Methods;430
38.5;32.5. CYP Inhibition Method Applications;432
38.6;Problems;433
38.7;References;433
39;Chapter 33: Plasma and Tissue Binding Methods;436
39.1;33.1. Introduction;436
39.2;33.2. In Silico Plasma Protein Binding Methods;436
39.2.1;33.2.1. Literature Computational Plasma Protein Binding Methods;436
39.2.2;33.2.2. Commercial In Silico Plasma Protein Binding Methods;436
39.3;33.3. In Vitro Binding Methods;437
39.3.1;33.3.1. Equilibrium Dialysis;437
39.3.1.1;33.3.1.1. Equilibrium Dialysis Method for Plasma;437
39.3.1.2;33.3.1.2. Equilibrium Dialysis Method for Tissue;438
39.3.1.3;33.3.1.3. Equilibrium Dialysis Method for Microsomes and Hepatocytes;438
39.3.2;33.3.2. Ultrafiltration Method;438
39.3.3;33.3.3. Ultracentrifugation Method;439
39.3.4;33.3.4. Immobilized Protein HPLC Column Method;439
39.3.5;33.3.5. Microdialysis Method;439
39.3.6;33.3.6. Other Plasma Protein Binding Methods;440
39.4;33.4. Red Blood Cell Binding;440
39.5;33.5. Contract Research Laboratories for Protein Binding Assays;441
39.6;Problems;441
39.7;References;441
40;Chapter 34: hERG Methods;444
40.1;34.1. Introduction;444
40.2;34.2. In Silico hERG Methods;444
40.3;34.3. In Vitro hERG Methods;446
40.3.1;34.3.1. In Vitro Fluorescent Membrane Potential Sensitive Dye Method for hERG;446
40.3.2;34.3.2. In Vitro Radioactive Ligand Binding Method for hERG;447
40.3.3;34.3.3. In Vitro Fluorescence Polarization Ligand Binding Method for hERG;448
40.3.4;34.3.4. In Vitro Rubidium Flux Method for hERG;448
40.3.5;34.3.5. In Vitro Manual Patch-Clamp Method for hERG;448
40.3.6;34.3.6. In Vitro Automated Patch-Clamp Method for hERG;449
40.3.7;34.3.7. In Vitro iPSC Cardiomyocyte Method for hERG;450
40.4;34.4. Ex Vivo Methods for hERG Blocking;451
40.4.1;34.4.1. Purkinje Fiber Ex Vivo Method for hERG Blocking;451
40.4.2;34.4.2. Langendorff Perfused Isolated Heart Ex Vivo Method for hERG Blocking;451
40.5;34.5. In Vivo Electrocardiography Telemetry for hERG Blocking;451
40.6;34.6. Applications of hERG Blocking Methods in Drug Discovery;451
40.7;Problems;451
40.8;References;452
41;Chapter 35: Toxicity Methods;454
41.1;35.1. Introduction;454
41.2;35.2. In Silico Toxicity Methods;454
41.2.1;35.2.1. Knowledge-Based Expert System In Silico Methods for Toxicity;455
41.2.2;35.2.2. Statistics-Based In Silico Methods for Toxicity;455
41.3;35.3. In Vitro Toxicity Methods;455
41.3.1;35.3.1. Drug-Drug Interaction Methods;455
41.3.1.1;35.3.1.1. Metabolic Enzyme Induction Methods;456
41.3.1.1.1;35.3.1.1.1. Hepatocyte Method for Metabolic Enzyme Induction;457
41.3.1.1.1.1;35.3.1.1.1.1. In Vitro Measurement of mRNA for Metabolic Enzyme Induction;457
41.3.1.1.1.2;35.3.1.1.1.2. In Vitro Measurement of Enzyme Activity for CYP Induction;457
41.3.1.1.2;35.3.1.1.2. In Vitro Nuclear Receptor Activation Methods for CYP Induction;457
41.3.2;35.3.2. In Vitro hERG Blocking Methods;458
41.3.3;35.3.3. In Vitro Genetic Toxicity Methods;458
41.3.3.1;35.3.3.1. In Vitro Ames Mutagenicity Method;458
41.3.3.2;35.3.3.2. In Vitro TK Mouse Lymphoma Cell Mutagenicity Method;459
41.3.3.3;35.3.3.3. In Vitro HPRT Chinese Hamster Ovary Cell Mutagenicity Method;459
41.3.3.4;35.3.3.4. In Vitro Micronucleus Clastogenicity Method;459
41.3.3.5;35.3.3.5. In Vitro Comet Clastogenicity Method;459
41.3.3.6;35.3.3.6. In Vitro GADD45a-GFP Mutagenicity and Clastogenicity Method;460
41.3.4;35.3.4. In Vitro Cytotoxicity Methods;460
41.3.4.1;35.3.4.1. In Vitro ATP Depletion Cytotoxicity Method;460
41.3.4.2;35.3.4.2. In Vitro MTT Human Hepatocyte Cytotoxicity Method;460
41.3.4.3;35.3.4.3. In Vitro LDH Cytotoxicity Method;460
41.3.4.4;35.3.4.4. In Vitro Neutral Red Cytotoxicity Method;461
41.3.5;35.3.5. In Vitro Embryo Teratogenicity Methods;461
41.3.6;35.3.6. In Vitro Off-Target Selectivity Screens;461
41.3.7;35.3.7. In Vitro Reactive Metabolite Methods;461
41.3.7.1;35.3.7.1. In Vitro Reactive Metabolite Method Using Glutathione Trapping;461
41.3.7.2;35.3.7.2. In Vitro Reactive Metabolite Method Using Covalent Protein Binding;461
41.4;35.4. In Vivo Toxicity Methods;462
41.4.1;35.4.1. Short-Term In Vivo Toxicity Methods;462
41.4.2;35.4.2. Preclinical and Clinical In Vivo Toxicity Methods;462
41.4.3;35.4.3. In Vivo Toxic Biomarker Methods;463
41.4.3.1;35.4.3.1. In Vivo Toxicometabonomic Method;463
41.4.3.2;35.4.3.2. In Vivo Toxicoproteomic Method;464
41.4.3.3;35.4.3.3. In Vivo Toxicogenomic Method;464
41.5;Problems;464
41.6;References;464
42;Chapter 36: Integrity and Purity Methods;468
42.1;36.1. Introduction;468
42.2;36.2. Samples for Integrity and Purity Profiling;469
42.3;36.3. Requirements of Integrity and Purity Profiling Methods;469
42.4;36.4. Integrity and Purity Method Characteristics;469
42.4.1;36.4.1. Sample Preparation;470
42.4.2;36.4.2. Sample Component Separation;471
42.4.3;36.4.3. Quantitation;471
42.4.4;36.4.4. Identity Characterization;472
42.5;36.5. Follow Up on Negative Identity Results;472
42.6;36.6. Example Generic High-Throughput Purity and Integrity Method;473
42.7;36.7. Purity and Integrity Case Studies;473
42.8;Problems;475
42.9;References;475
43;Chapter 37: Pharmacokinetic Methods;476
43.1;37.1. Introduction;476
43.2;37.2. Dosing for PK Studies;476
43.2.1;37.2.1. Single Compound Dosing;476
43.2.2;37.2.2. Cassette Dosing;476
43.3;37.3. PK Sampling and Sample Preparation;477
43.4;37.4. LC/MS/MS Analysis;478
43.5;37.5. Advanced PK Studies;479
43.6;37.6. Example Pharmacokinetic Data;479
43.7;37.7. Tissue Penetration;479
43.8;37.8. Unbound Drug Concentration in Plasma or Tissue;481
43.9;37.9. Contract Research Laboratories;481
43.10;Problems;481
43.11;References;482
44;Chapter 38: Diagnosing and Improving Pharmacokinetic Performance;484
44.1;38.1. Introduction;484
44.2;38.2. Diagnosing Underlying Property Limitations from PK Performance;485
44.2.1;38.2.1. Diagnosing the Cause of High Clearance or Short Half-Life;485
44.2.2;38.2.2. Diagnosing Cause of Low Oral Bioavailability;485
44.2.3;38.2.3. Diagnosing the Cause of Low AUC or Cmax;486
44.2.4;38.2.4. Diagnosing the Cause of Nonlinear Pharmacokinetics;486
44.3;38.3. Case Studies on Diagnosing Unfavorable PK Behavior;486
44.3.1;38.3.1. Pharmacokinetics of CCR5 antagonist UK-427,857;486
44.3.2;38.3.2. Pharmacokinetics of Triazole Antifungal Voriconazole;487
44.3.3;38.3.3. Optimization of a PDE5 Inhibitor;489
44.4;Problems;490
44.5;References;490
45;Chapter 39: Prodrugs;492
45.1;39.1. Introduction;492
45.2;39.2. Prodrug Design Differs with the ADME Process and Administration Route;494
45.3;39.3. Using Prodrugs to Improve Solubility;494
45.4;39.4. Prodrugs to Increase Passive Permeability;497
45.4.1;39.4.1. Ester Prodrugs for Carboxylic Acids;497
45.4.2;39.4.2. Ester Prodrugs for Alcohols and Phenols;499
45.4.3;39.4.3. Prodrugs Derived from Nitrogen-Containing Functional Group;500
45.5;39.5. Transporter-Mediated Prodrugs to Enhance Intestinal Absorption;500
45.6;39.6. Prodrugs to Reduce Metabolism;503
45.7;39.7. Prodrugs to Target Specific Tissues;504
45.8;39.8. Soft Drugs;504
45.9;Problems;505
45.10;References;505
46;Chapter 40: Effects of Properties on Biological Assays;508
46.1;40.1. Introduction;508
46.2;40.2. Effects of Insolubility IN DMSO;510
46.3;40.3. Dealing with Insolubility in DMSO;511
46.4;40.4. Effects of Insolubility in Aqueous Buffers;511
46.5;40.5. Dealing with Insolubility in Aqueous Buffers;513
46.5.1;40.5.1. Modify the Dilution Protocol to Keep Compounds in Solution;513
46.5.2;40.5.2. Assess Compound Solubility and Concentrations;513
46.5.3;40.5.3. Optimize Assays for Low-Solubility Compounds;514
46.5.4;40.5.4. Effects of Permeability in Cell-Based Assays;514
46.5.5;40.5.5. Dealing with Permeability in Cell-Based Assays;515
46.5.6;40.5.6. Effects of Chemical Instability in Bioassays;515
46.5.7;40.5.7. Dealing with Chemical Instability in Bioassays;515
46.6;Problems;515
46.7;References;516
47;Chapter 41: Formulation;518
47.1;41.1. Introduction;518
47.2;41.2. Routes of Administration;518
47.2.1;41.2.1. Oral (PO);519
47.2.2;41.2.2. Intravenous (IV);519
47.2.3;41.2.3. Intraperitoneal (IP);519
47.2.4;41.2.4. Subcutaneous (SC);520
47.2.5;41.2.5. Intramuscular (IM);520
47.3;41.3. Potency Drives Delivery Opportunities;520
47.4;41.4. Formulation Strategies;520
47.4.1;41.4.1. Adjust pH of Dosing Solution;521
47.4.2;41.4.2. Use Co-Solvent;521
47.4.3;41.4.3. Utilize Surfactants;522
47.4.4;41.4.4. Lipid-Based Formulation;523
47.4.5;41.4.5. Drug Complexation;525
47.4.6;41.4.6. Solid Dispersions;526
47.4.7;41.4.7. Particle Size Reduction;526
47.5;41.5. Practical Guide for Formulation in Drug Discovery;528
47.5.1;41.5.1. Formulation for PK Studies;528
47.5.2;41.5.2. Formulation for Toxicity Studies;529
47.5.3;41.5.3. Formulation for Pharmacological Activity Studies;529
47.6;Problems;529
47.6.1;Answers;530
47.7;References;530
48;Appendix I: Answers to Chapter Problems;532
48.1;Chapter 1—Introduction;532
48.2;Chapter 2—Benefits of Property Assessment and Good Drug-like Properties;532
48.3;Chapter 3—In Vivo Environments Affect Drug Exposure;532
48.4;Chapter 4—Prediction Rules for Rapid Property Profiling From Structure;533
48.5;Chapter 5—Lipophilicity;534
48.6;Chapter 6—pKa;535
48.7;Chapter 7—Solubility;535
48.8;Chapter 8—Permeability;536
48.9;Chapter 9—Transporters;537
48.10;Chapter 10—Blood-Brain Barrier;537
48.11;Chapter 11—Metabolic Stability;537
48.12;Chapter 12—Plasma Stability;538
48.13;Chapter 13—Solution Stability;539
48.14;Chapter 14—Plasma Protein Binding;539
48.15;Chapter 15—Cytochrome P450 Inhibition;540
48.16;Chapter 16—hERG Blocking;540
48.17;Chapter 17—Toxicity;541
48.18;Chapter 18—Purity and Integrity;541
48.19;Chapter 19—Pharmacokinetics;541
48.20;Chapter 20—Lead Properties;542
48.21;Chapter 21—Strategies for Integrating Drug-like Properties into Drug Discovery;542
48.22;Chapter 22—Methods for Profiling Drug-like Properties: General Concepts;542
48.23;Chapter 23—Lipophilicity Methods;543
48.24;Chapter 24—pKa Methods;543
48.25;Chapter 25—Solubility Methods;543
48.26;Chapter 26—Permeability Methods;544
48.27;Chapter 27—Transporter Methods;544
48.28;Chapter 28—Blood-Brain Barrier Methods;545
48.29;Chapter 29—Metabolic Stability Methods;545
48.30;Chapter 30—Plasma Stability Methods;545
48.31;Chapter 31—Solution Stability Methods;546
48.32;Chapter 32—CYP Inhibition Methods;546
48.33;Chapter 33—Plasma Tissue Binding Methods;546
48.34;Chapter 34—hERG Methods;546
48.35;Chapter 35—Toxicity Methods;547
48.36;Chapter 36—Integrity and Purity Methods;547
48.37;Chapter 37—Pharmacokinetic Methods;547
48.38;Chapter 38—Diagnosing and Improving Pharmacokinetic Performance;548
48.39;Chapter 39—Prodrugs;548
48.40;Chapter 40—Effects of Properties on Biological Assays;549
48.41;Chapter 41—Formulation;550
49;Appendix II;552
49.1;General Reference Books;552
50;Appendix III: Glossary;554
51;Index;572
52;Back Cover;582




