E-Book, Englisch, 476 Seiten, E-Book
Diday / Noirhomme-Fraiture Symbolic Data Analysis and the SODAS Software
1. Auflage 2008
ISBN: 978-0-470-72355-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 476 Seiten, E-Book
ISBN: 978-0-470-72355-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Symbolic data analysis is a relatively new field that provides arange of methods for analyzing complex datasets. Standardstatistical methods do not have the power or flexibility to makesense of very large datasets, and symbolic data analysis techniqueshave been developed in order to extract knowledge from such data.Symbolic data methods differ from that of data mining, for example,because rather than identifying points of interest in the data,symbolic data methods allow the user to build models of the dataand make predictions about future events.
This book is the result of the work f a pan-European projectteam led by Edwin Diday following 3 years work sponsored byEUROSTAT. It includes a full explanation of the new SODASsoftware developed as a result of this project. The software andmethods described highlight the crossover between statistics andcomputer science, with a particular emphasis on data mining.
Autoren/Hrsg.
Weitere Infos & Material
Contributors.
Foreword.
Preface.
ASSO Partners.
Introduction.
1. The state of the art in symbolic data analysis: overview andfuture (Edwin Diday).
PART I. DATABASES VERSUS SYMBOLIC OBJECTS.
2. Improved generation of symbolic objects from relationaldatabases (Yves Lechevallier, Aicha El Golli and GeorgeHébrail).
3. Exporting symbolic objects to databases (Donato Malerba,Floriana Esposito and Annalisa Appice).
4. A statistical metadata model for symbolic objects (HaralambosPapageorgiou and Maria Vardaki).
5. Editing symbolic data (Monique-Noirhomme-Fraiture, PaulaBrito, Anne de Baenst-Vandenbroucke and Adolphe Nahimana).
6. The normal symbolic form (Marc Csernel and Francisco de A.T.de Carvalho).
7. Visualization (Monique-Noirhomme-Fraiture and AdolpheNahimana).
PART II. UNSUPERVISED METHODS.
8. Dissimilarity and matching (Floriana Esposito, Donato Malerbaand Annalisa Appice).
9. Unsupervised divisive classification (Jean-Paul Rasson,Jean-Yves Pirçon, Pascale Lallemand and SéverineAdans).
10. Hierarchical and pyramidal clustering (Paula Brito andFrancisco de A.T. de Carvalho).
11 .Clustering methods in symbolic data analysis (Francisco deA.T. de Carvalho, Yves Lechevallier and Rosanna Verde).
12. Visualizing symbolic data by Kohonen maps (Hans-HermannBock).
13 .Validation of clustering structure: determination of thenumber of clusters (André Hardy).
14. Stability measures for assessing a partition and itsclusters: application to symbolic data sets (Patrice Bertrand andGhazi Bel Mufti).
15. Principal component analysis of symbolic data described byintervals (N.Carlo Lauro, Rosanna Verde and Antonio Irpino).
16. Generalized canonical analysis (N.Carlo Lauro, Rosanna Verdeand Antonio Irpino).
PART III .SUPERVISED METHODS.
17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemandand Séverine Adans).
18. Factor discriminant analysis (N.Carlo Lauro, Rosanna Verdeand Antonio Irpino).
19. Symbolic linear regression methodology (Filipe Afonso, LynneBillard, Edwin Diday and Mehdi Limam).
20. Multi-layer perceptrons and symbolic data (Fabrice Rossi andBrieuc Conan-Guez).
PART IV. APPLICATION AND THE SODAS SOFTWARE.
21. Application to the Finnish, Spanish and Portuguese data ofthe European Social Survey (Soile Mustjärvi and SeppoLaaksonen).
22. People's life values and trust components in Europe:symbolic data analysis for 20-22 countries (Seppo Laaksonen).
23. Symbolic analysis of the Time Use Survey in the Basquecountry (Marta Mas and Haritz Olaeta).
24. SODAS2 software: overview and methodology (Anne deBaenst-Vandenbroucke and Yves Lechevallier).
Index.




