E-Book, Englisch, 526 Seiten
Dreher / Tremblay Handbook of Reward and Decision Making
1. Auflage 2009
ISBN: 978-0-08-092348-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 526 Seiten
ISBN: 978-0-08-092348-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This book addresses a fundamental question about the nature of behavior: how does the brain process reward and makes decisions when facing multiple options? The book presents the most recent and compelling lesion, neuroimaging, electrophysiological and computational studies, in combination with hormonal and genetic studies, which have led to a clearer understanding of neural mechanisms behind reward and decision making. The neural bases of reward and decision making processes are of great interest to scientists because of the fundamental role of reward in a number of behavioral processes (such as motivation, learning and cognition) and because of their theoretical and clinical implications for understanding dysfunctions of the dopaminergic system in several neurological and psychiatric disorders (schizophrenia, Parkinson's disease, drug addiction, pathological gambling, ...).
* Comprehensive coverage of approaches to studying reward and decision making, including primate neurophysiology and brain imaging studies in healthy humans and in various disorders, genetic and hormonal influences on the reward system and computational models. * Covers clinical implications of process dysfunction (e.g., schizophrenia, Parkinson's disease, eating disorders, drug addiction, pathological gambling) * Uses multiple levels of analysis, from molecular mechanisms to neural systems dynamics and computational models. ' This is a very interesting and authoritative handbook by some of the most outstanding investigators in the field of reward and decision making ', Professor Edmund T. Rolls, Oxford Center for Computational Neuroscience, UK
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Handbook of Reward and Decision Making;4
3;Copyright Page;5
4;Contents;6
5;Preface;10
6;List of contributors;14
7;Part One: Monkey Anatomical and Electrophysiological Studies on Reward and Decision Making;18
7.1;Chapter 1. Anatomy and connectivity of the reward circuit;20
7.1.1;Abstract;20
7.1.2;Key points;20
7.1.3;1.1 Introduction;20
7.1.4;1.2 Prefrontal cortex;21
7.1.5;1.3 The ventral striatum;24
7.1.6;1.4 Ventral pallidum;30
7.1.7;1.5 The midbrain DA neurons;32
7.1.8;1.6 Completing the cortico-BG reward circuit;35
7.1.9;1.7 Complex network features of the reward circuit;37
7.1.10;References;38
7.2;Chapter 2. Electrophysiological correlates of reward processing in dopamine neurons;46
7.2.1;Abstract;46
7.2.2;Key points;46
7.2.3;2.1 Introduction;47
7.2.4;2.2 Conditioning and its explanations;47
7.2.5;2.3 Neurophysiology of the dopamine system;54
7.2.6;2.4 Conclusion;62
7.2.7;Acknowledgements;62
7.2.8;References;63
7.3;Chapter 3. The ventral striatum: a heterogeneous structure involved in reward processing, motivation and decision-making;68
7.3.1;Abstract;68
7.3.2;Key points;68
7.3.3;3.1 Introduction;69
7.3.4;3.2 The complex anatomical organization of the ventral striatum;70
7.3.5;3.3 Neuronal recording in monkeys;76
7.3.6;3.4 Dysfunction in ventral striatum and perturbation of different motivational domains;85
7.3.7;Acknowledgement;89
7.3.8;References;89
7.4;Chapter 4. Role of the primate lateral prefrontal cortex in integrating decision-making and motivational information;96
7.4.1;Abstract;96
7.4.2;Key points;96
7.4.3;4.1 Introduction;96
7.4.4;4.2 Reward-related sustained neuronal activity in the LPFC;97
7.4.5;4.3 Coding the response outcome in prefrontal neurons;101
7.4.6;4.4 Integration of motivational and cognitive information in prefrontal neurons;103
7.4.7;4.5 Prefrontal neurons related to perceptual decision-making and forced choice discrimination;106
7.4.8;4.6 Outcome-dependent decision-making and prefrontal neurons;107
7.4.9;4.7 Implicit decision-making and prefrontal neuronal activity;107
7.4.10;4.8 Decision-making and multiple reward signals in the primate brain;109
7.4.11;References;111
7.5;Chapter 5. From reward value to decision-making: neuronal and computational principles;114
7.5.1;Abstract;114
7.5.2;Key Points;114
7.5.3;5.1 Introduction;114
7.5.4;5.2 A connectional and functional framework;116
7.5.5;5.3 Taste reward;117
7.5.6;5.4 Olfactory reward;120
7.5.7;5.5 Flavor reward;121
7.5.8;5.6 Oral texture and temperature reward;121
7.5.9;5.7 Somatosensory and temperature inputs to the orbitofrontal cortex, and affective value;122
7.5.10;5.8 Visual inputs to the orbitofrontal cortex, and visual stimulus–reinforcement association learning and reversal;123
7.5.11;5.9 Reward prediction error neurons;126
7.5.12;5.10 Social reinforcers such as face and voice expression;128
7.5.13;5.11 Top-down effects of cognition and attention on the reward value of affective stimuli;129
7.5.14;5.12 Emotion and reward;131
7.5.15;5.13 Individual differences in reward processing and emotion;131
7.5.16;5.14 Beyond the representation of reward value to choice decision-making;133
7.5.17;5.15 Cortical networks that make choices between rewards: is there a common currency?;136
7.5.18;5.16 A computational basis for stimulus–reinforcer association learning and reversal in the orbitofrontal cortex involving conditional reward neurons and negative reward prediction error neurons;138
7.5.19;Summary;140
7.5.20;Acknowledgements;140
7.5.21;References;141
8;Part Two: fMRI Studies on Reward and Decision Making;152
8.1;Chapter 6. Decomposing brain signals involved in value-based decision making;154
8.1.1;Abstract;154
8.1.2;Key points;154
8.1.3;6.1 Basic computations involved in decision making;154
8.1.4;6.2 Computing reward prediction error;156
8.1.5;6.3 Computing various uncertainty signals in the brain;160
8.1.6;6.4 Discounting the value of costly options in delay and effort discounting studies;163
8.1.7;6.5 The concept of common neural currency;164
8.1.8;6.6 Common and distinct brain regions involved in processing primary and secondary rewards;165
8.1.9;6.7 Distinguishing two brain systems involved in choosing between different types of rewards;168
8.1.10;6.8 Goal-value and decision-value signals;169
8.1.11;6.9 Variation in dopamine genes influence reward processing;171
8.1.12;6.10 Conclusions;174
8.1.13;Acknowledgments;175
8.1.14;References;175
8.2;Chapter 7. Reward processing in the human brain: insights from fMRI;182
8.2.1;Abstract;182
8.2.2;Key points;182
8.2.3;7.1 Introduction;183
8.2.4;7.2 General neuroanatomy of reward processing;184
8.2.5;7.3 The subjective value of rewards;186
8.2.6;7.4 Decision-making computations that contribute to valuation;190
8.2.7;7.5 Modulation of reward processing and decision making;192
8.2.8;7.6 Future directions and open questions;195
8.2.9;References;196
8.3;Chapter 8. Spatiotemporal characteristics of perceptual decision making in the human brain;202
8.3.1;Abstract;202
8.3.2;Key points;202
8.3.3;8.1 Introduction;203
8.3.4;8.2 Perceptual decision making in monkeys;205
8.3.5;8.3 Perceptual decision making in humans;207
8.3.6;8.4 Spatiotemporal characterization of decision making by integrating EEG with fMRI;217
8.3.7;8.5 From perceptual to reward-based decision making;221
8.3.8;References;223
8.4;Chapter 9. Feedback valuation processing within the prefrontal cortex;230
8.4.1;Abstract;230
8.4.2;Key points;230
8.4.3;9.1 Introduction;230
8.4.4;9.2 Anterior cingulate cortex;231
8.4.5;9.3 Orbitofrontal cortex;233
8.4.6;9.4 Lateral prefrontal cortex;235
8.4.7;9.5 Dissociation of the role of OFC, ACC, and dorsolateral prefrontal cortex (DLPFC) in reward-based decision-making;236
8.4.8;9.6 Conclusions;240
8.4.9;Acknowledgements;240
8.4.10;References;240
8.5;Chapter 10. Computational neuroimaging: monitoring reward learning with blood flow;246
8.5.1;Abstract;246
8.5.2;Key points;246
8.5.3;10.1 Introduction;246
8.5.4;10.2 Human studies of reward processing;253
8.5.5;10.3 Conclusions;260
8.5.6;References;261
9;Part Three: Brain Disorders Involving Dysfunctions of Reward and Decision Making Processes;266
9.1;Chapter 11. Can models of reinforcement learning help us to understand symptoms of schizophrenia?;268
9.1.1;Abstract;268
9.1.2;Key points;268
9.1.3;11.1 Introduction;269
9.1.4;11.2 Theories of altered reward processing in schizophrenia;269
9.1.5;11.3 Dopamine, schizophrenia, and reinforcement learning;271
9.1.6;11.4 The possible importance of glutamate;272
9.1.7;11.5 Studies of reward processing/reinforcement learning in psychosis: behavioral studies;273
9.1.8;11.6 Studies of reward processing/reinforcement learning in psychosis: neuroimaging studies;274
9.1.9;11.7 Can an understanding of reward and dopamine help us to understand symptoms of schizophrenia?;276
9.1.10;11.8 Summary;281
9.1.11;Acknowledgements;282
9.1.12;References;282
9.2;Chapter 12. Effects of dopamine depletion on reward-seeking behavior: evidence from human and non-human primates;288
9.2.1;Abstract;288
9.2.2;Key points;288
9.2.3;12.1 Preamble: idiopathic Parkinson’s disease and the monkey MPTP model;289
9.2.4;12.2 Observations: what are the reward-seeking deficits induced by dopamine depletion?;290
9.2.5;12.3 Theories: what is the basal ganglia dysfunction induced by dopamine depletion?;294
9.2.6;12.4 Explanations: how can basal ganglia dysfunction account for reward-seeking deficits?;298
9.2.7;12.5 Perspective: dopamine replacement therapy and repetitive behaviors;299
9.2.8;References;299
9.3;Chapter 13. A neuropsychological perspective on the role of the prefrontal cortex in reward processing and decision-making;308
9.3.1;Abstract;308
9.3.2;Key points;308
9.3.3;13.1 Brief history of neuropsychology;309
9.3.4;13.2 Phineas Gage;310
9.3.5;13.3 Somatic marker hypothesis;311
9.3.6;13.4 Emotion regulation;313
9.3.7;13.5 Making decisions;315
9.3.8;13.6 Social interactions and moral judgments;316
9.3.9;13.7 The aging VMPC;318
9.3.10;13.8 Conclusions;321
9.3.11;Acknowledgement;322
9.3.12;References;322
10;Part Four: Genetic and Hormonal Influences on the Reward System;324
10.1;Chapter 14. Gonadal steroid hormones' influence on reward and decision making processes;326
10.1.1;Abstract;326
10.1.2;Key points;326
10.1.3;14.1 Introduction;327
10.1.4;14.2 Effects of testosterone on cognitive capacities;328
10.1.5;14.3 Effects of estradiol and progesterone on cognitive capacities;332
10.1.6;14.4 Actions of gonadal steroid hormones in the brain;340
10.1.7;14.5 Conclusions;341
10.1.8;References;342
10.2;Chapter 15. Hormone effects on specific motivational states and underlying CNS arousal;352
10.2.1;Abstract;352
10.2.2;Key points;352
10.2.3;15.1 CNS arousal underlying the activation of motivated behaviors;353
10.2.4;15.2 Estrogens and CNS arousal;355
10.2.5;15.3 Sources of sexual arousal;358
10.2.6;15.4 Future directions;359
10.2.7;References;360
10.3;Chapter 16. The genetic basis of individual differences in reward processing and the link to addictive behavior;362
10.3.1;Abstract;362
10.3.2;Key points;362
10.3.3;16.1 Dopaminergic reward system and addictive behavior;363
10.3.4;16.2 Pathological gambling: model for addiction without a substance;364
10.3.5;16.3 Individual differences and vulnerability to addictive behaviors;367
10.3.6;16.4 Candidate gene studies of dopamine transmission: DAT and COMT;368
10.3.7;16.5 Imaging genetics of the DAT/COMT interaction and reward sensitivity;369
10.3.8;16.6 Looking forward;370
10.3.9;References;372
10.4;Chapter 17. Catechol-O-methyltransferase (COMT) genotype effects on brain activation elicited by affective stimuli and cognitive tasks;378
10.4.1;Abstract;378
10.4.2;Key points;378
10.4.3;17.1 Introduction;378
10.4.4;17.2 COMT effects on brain activation elicited by working memory and executive control;379
10.4.5;17.3 COMT effects and negative mood states;381
10.4.6;17.4 Epistatic gene–gene interactions modulating dopamine and glutamate interactions;383
10.4.7;17.5 COMT effects in the brain reward system;383
10.4.8;Acknowledgement;384
10.4.9;References;384
11;Part Five: Computational Models of the Reward System and Decision Making;390
11.1;Chapter 18. Optimal decision-making theories;392
11.1.1;Abstract;392
11.1.2;Key points;392
11.1.3;18.1 Introduction;392
11.1.4;18.2 Models of optimal decision making in the cortex;393
11.1.5;18.3 Model of decision making in the cortico-basal-ganglia circuit;398
11.1.6;18.4 Basal ganglia and cortical integration;403
11.1.7;18.5 Discussion;406
11.1.8;18A. Appendix A: Diffusion model implements SPRT;407
11.1.9;18B. Appendix B: Diffusion model maximizes reward rate;408
11.1.10;18C. Appendix C: MSPRT;409
11.1.11;18D. Appendix D: STN and GP can compute the optimal conflict;410
11.1.12;18E. Appendix E: Basal ganglia model is unaffected by inhibition of integrators;411
11.1.13;Acknowledgement;412
11.1.14;References;412
11.2;Chapter 19. The basal ganglia in reward and decision making: computational models and empirical studies;416
11.2.1;Abstract;416
11.2.2;Key points;416
11.2.3;19.1 Introduction;417
11.2.4;19.2 BG circuitry and function;417
11.2.5;19.3 Basic model;419
11.2.6;19.4 Empirical support for basic model;421
11.2.7;19.5 Appended models;428
11.2.8;19.6 Conclusion;435
11.2.9;References;435
11.3;Chapter 20. Reward-based emotions: affective evaluation of outcomes and regret learning;444
11.3.1;Abstract;444
11.3.2;Key points;444
11.3.3;20.1 Reward-based emotions: emotions as affective evaluations of outcomes;445
11.3.4;20.2 Reward-based emotions implement learning;449
11.3.5;20.3 What should adaptive learning do?;450
11.3.6;20.4 Private and social rewards;451
11.3.7;20.5 Conclusions;453
11.3.8;References;453
11.4;Chapter 21. Bayesian decision making in two-alternative forced choices;458
11.4.1;Abstract;458
11.4.2;Key points;458
11.4.3;21.1 Bayesian decision model;460
11.4.4;21.2 Estimating sensory likelihoods on line;463
11.4.5;21.3 Prediction in a motion discrimination task;466
11.4.6;21.4 Conclusion;471
11.4.7;21A. Mathematical appendix;472
11.4.8;References;474
11.5;Chapter 22. Predicting risk in a multiple stimulus-reward environment;476
11.5.1;Abstract;476
11.5.2;Key points;476
11.5.3;22.1 Introduction;477
11.5.4;22.2 Models;479
11.5.5;22.3 Learning;484
11.5.6;22.5 Results;487
11.5.7;22.6 Discussion;489
11.5.8;References;490
12;Index;492
12.1;A;492
12.2;B;493
12.3;C;493
12.4;D;494
12.5;E;495
12.6;F;496
12.7;G;497
12.8;H;497
12.9;I;497
12.10;L;497
12.11;M;498
12.12;N;499
12.13;O;500
12.14;P;500
12.15;R;501
12.16;S;503
12.17;T;503
12.18;U;504
12.19;V;504
12.20;W;505
13;Color Plates;506