E-Book, Englisch, 332 Seiten, eBook
Enz / Kaiser MEMS-based Circuits and Systems for Wireless Communication
1. Auflage 2012
ISBN: 978-1-4419-8798-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 332 Seiten, eBook
Reihe: Series on Integrated Circuits and Systems
ISBN: 978-1-4419-8798-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Contributors;9
4;Acronyms;11
5;Part I NEMS/MEMS Devices;13
5.1;Chapter
1 Thin-Film Bulk Acoustic Wave Resonators;14
5.1.1;1.1 Introduction;14
5.1.1.1;1.1.1 Thin-Film Bulk Acoustic Wave Resonators;16
5.1.1.2;1.1.2 Background;17
5.1.2;1.2 Technology;18
5.1.2.1;1.2.1 Aluminum Nitride;18
5.1.2.2;1.2.2 Process Flow for SMRs;19
5.1.3;1.3 Modeling BAW Resonators;21
5.1.3.1;1.3.1 Spurious Modes;21
5.1.3.2;1.3.2 One-Dimensional Mason Model;22
5.1.3.3;1.3.3 Electrical Equivalent Circuit (1D);25
5.1.3.4;1.3.4 2D/3D Models;28
5.1.3.5;1.3.5 A/p Empirical Model;29
5.1.4;1.4 Conclusion;37
5.1.5;References;39
5.2;Chapter
2 Contour-Mode Aluminum Nitride Piezoelectric MEMS Resonators and Filters;40
5.2.1;2.1 Aluminum Nitride MEMS Contour-Mode Resonator Technology;40
5.2.1.1;2.1.1 One-Port AlN Contour-Mode Resonators;43
5.2.1.2;2.1.2 Two-Port Contour-Mode Resonators;46
5.2.1.3;2.1.3 Figures of Merit for AlN Contour-Mode Resonators;47
5.2.1.4;2.1.4 AlN Piezoelectric Films and Microfabrication Process for Contour-Mode Resonators;49
5.2.2;2.2 Aluminum Nitride Contour-Mode MEMS Oscillators;51
5.2.3;2.3 Aluminum Nitride Contour-Mode MEMS Filters;55
5.2.3.1;2.3.1 Electrically Coupled AlN Contour-Mode Filters;56
5.2.3.2;2.3.2 Mechanically Coupled AlN Contour-Mode Filters;58
5.2.4;2.4 Applications for Aluminum Nitride Contour-Mode MEMS Resonator Technology;62
5.2.5;2.5 Concluding Remarks and Future Directions;64
5.2.6;References;64
5.3;Chapter
3 Nanoelectromechanical Systems (NEMS);66
5.3.1;3.1 Electromechanical Information Processing;66
5.3.2;3.2 NEMS Technology: Top-Down or Bottom-Up?;67
5.3.3;3.3 NEM Switches;73
5.3.4;3.4 NEM Relays;74
5.3.5;3.5 Nanoelectromechanical Field-Effect Transistors as Abrupt Hysteretic Switches;80
5.3.6;3.6 Nanoelectromechanical Resonators;84
5.3.6.1;3.6.1 Principles, Opportunities and Limits;84
5.3.6.2;3.6.2 High-Frequency Silicon Nanowire and Carbon Nanotube Resonators;88
5.3.6.3;3.6.3 From Resonant Gate to Vibrating Body Transistors;95
5.3.7;3.7 NEM Mixers and Single Nanotube Radio;100
5.3.8;3.8 Conclusions and Perspectives;102
5.3.9;References;103
5.4;Chapter
4 Future Trends in Acoustic RF MEMS Devices;106
5.4.1;4.1 Overview of Physical Phenomena Used in Future RF MEMS Devices;106
5.4.1.1;4.1.1 Elastic Wave Propagation;107
5.4.1.1.1;4.1.1.1 Bulk Waves;107
5.4.1.1.2;4.1.1.2 Guided Waves;108
5.4.1.1.3;4.1.1.3 Elastic Waves in Periodic Media;110
5.4.1.2;4.1.2 Transduction Mechanisms for RF Devices;113
5.4.1.2.1;4.1.2.1 Piezoelectricity;114
5.4.1.2.2;4.1.2.2 Electrostriction;116
5.4.2;4.2 Acoustic RF Resonators and Bandpass Filters;117
5.4.2.1;4.2.1 Thickness-Shear Resonators;117
5.4.2.2;4.2.2 Guided Acoustic Wave Resonators and Filters;120
5.4.2.3;4.2.3 Tunable Thickness Extensional Resonators;121
5.4.3;4.3 Acoustic RF Devices Based on Phononic Crystals;123
5.4.3.1;4.3.1 Resonators and Filters;124
5.4.3.2;4.3.2 Multiplexers and Demultiplexers;125
5.4.4;4.4 Conclusion;126
5.4.5;References;126
6;Part II MEMS-Based Circuits;129
6.1;Chapter
5 The Design of Low-Power High-Q Oscillators;130
6.1.1;5.1 Introduction;130
6.1.2;5.2 General Theory of High-Q Oscillators;131
6.1.2.1;5.2.1 Splitting of the Oscillator for Nonlinear Analysis;131
6.1.2.2;5.2.2 Phase Noise;134
6.1.2.2.1;5.2.2.1 Introduction;134
6.1.2.2.2;5.2.2.2 Linear Analysis;135
6.1.2.2.3;5.2.2.3 Nonlinear Time Variant Circuit;136
6.1.3;5.3 The Pierce Oscillator;137
6.1.3.1;5.3.1 Basic Circuit and Linear Analysis;137
6.1.3.2;5.3.2 Amplitude of Oscillation;140
6.1.3.3;5.3.3 Phase Noise;141
6.1.3.3.1;5.3.3.1 Introduction;141
6.1.3.3.2;5.3.3.2 Linear Calculation;142
6.1.3.3.3;5.3.3.3 Phase Noise of the Nonlinear Time Variant Circuit;142
6.1.3.4;5.3.4 Practical Implementations;144
6.1.4;5.4 Parallel-Resonance Oscillator;146
6.1.4.1;5.4.1 Basic Circuit and Linear Analysis;146
6.1.4.2;5.4.2 Amplitude of Oscillation;148
6.1.4.3;5.4.3 Phase Noise;150
6.1.4.3.1;5.4.3.1 Introduction;150
6.1.4.3.2;5.4.3.2 Linear Analysis;151
6.1.4.3.3;5.4.3.3 Phase Noise of the Nonlinear Time Variant Circuit;151
6.1.4.4;5.4.4 Practical Implementations;153
6.1.5;5.5 Series-Resonance Oscillator;156
6.1.5.1;5.5.1 Basic Circuit and Linear Analysis;156
6.1.5.2;5.5.2 Amplitude of Oscillation;159
6.1.5.3;5.5.3 Phase Noise;160
6.1.5.4;5.5.4 Practical Implementation;160
6.1.6;5.6 Comparison and Conclusion;162
6.1.7;References;163
6.2;Chapter 6 5.4GHz, 0.35µm BiCMOS
FBAR-Based Single-Ended and Balanced Oscillators in Above-IC Technology;164
6.2.1;6.1 Introduction;165
6.2.2;6.2 Resonators and Oscillators in Transceivers;166
6.2.2.1;6.2.1 Resonators' Use in Transceivers;166
6.2.2.2;6.2.2 Oscillators' Use in Transceivers;166
6.2.2.2.1;6.2.2.1 Figure of Merit for Phase Noise Design;168
6.2.2.2.2;6.2.2.2 General Oscillator Design;168
6.2.2.3;6.2.3 LC Resonators;169
6.2.2.4;6.2.4 Phase Noise Versus Q-Factor;170
6.2.2.5;6.2.5 BAW Resonators;171
6.2.3;6.3 Above-IC Technology;174
6.2.4;6.4 FBAR-Based Single-Ended and Balanced Oscillators;177
6.2.4.1;6.4.1 Single-Ended Version;177
6.2.4.2;6.4.2 Balanced Version;181
6.2.4.3;6.4.3 Measurement Results;184
6.2.5;6.5 LC-Based Balanced Oscillator;186
6.2.5.1;6.5.1 Cross-Coupled Balanced Oscillator;187
6.2.5.2;6.5.2 Balanced Pierce Oscillator;189
6.2.5.3;6.5.3 LC Based Oscillators Versus FBAR-Based Oscillator;193
6.2.6;6.6 Conclusion;193
6.2.7;References;194
6.3;Chapter
7 Low-Power Quadrature Oscillator Design Using BAW Resonators;196
6.3.1;7.1 Introduction;196
6.3.2;7.2 Quadrature Modulation, RF-MEMS Potential, and QVCO Design Background;197
6.3.2.1;7.2.1 Quadrature Signals in RF Communication Systems;197
6.3.2.2;7.2.2 Need for MEMS in RF Systems;198
6.3.2.3;7.2.3 QVCO Design Approach;200
6.3.3;7.3 BAW Technology and MEMS-Assisted RF Design;201
6.3.3.1;7.3.1 BAW Resonator as Tuning Element in RF Design;201
6.3.4;7.4 BAW-Tuned QVCO Analysis;205
6.3.4.1;7.4.1 RF Oscillator Design Using BAW Resonators;205
6.3.4.2;7.4.2 Coupling Mechanism and BQVCO Topology;207
6.3.4.3;7.4.3 Comparison of BAW- and LC-Stabilized Oscillators;208
6.3.4.4;7.4.4 Quadrature Autocalibration Loop;211
6.3.5;7.5 Conclusion;213
6.3.6;References;213
6.4;Chapter
8 Tunable BAW Filters;215
6.4.1;8.1 Tunable BAW Filter Synthesis and Its Physical Implementation;216
6.4.1.1;8.1.1 BAW Resonator;216
6.4.1.2;8.1.2 Filter Topologies;216
6.4.1.2.1;8.1.2.1 Ladder Filter;216
6.4.1.2.2;8.1.2.2 Lattice Filter;217
6.4.1.3;8.1.3 Filter Synthesis;218
6.4.1.4;8.1.4 BAW Resonator Tuning;222
6.4.1.5;8.1.5 Implementation of the Tuning Cell: Design of the Parallel Component;223
6.4.1.5.1;8.1.5.1 Q-Enhanced Inductor;224
6.4.1.6;8.1.6 Filter with Q-Enhanced Inductors;225
6.4.1.6.1;8.1.6.1 Physical Implementation of the Tuning Cell with Q-Enhanced Inductors;225
6.4.1.6.2;8.1.6.2 Simulation Results;225
6.4.1.6.3;8.1.6.3 Measurement Results;226
6.4.1.6.4;8.1.6.4 Filter Architecture with Reduced Inductor Count;228
6.4.1.6.5;8.1.6.5 Inductorless Filter;229
6.4.2;8.2 Tuning Circuitry;231
6.4.2.1;8.2.1 Preliminary Discussion;231
6.4.2.2;8.2.2 Discussion on the Tuning Methods;232
6.4.2.2.1;8.2.2.1 Indirect Tuning Method: PLL with a VCO Master Cell;232
6.4.2.2.2;8.2.2.2 Indirect Tuning Method: Frequency-Locked Loop by Envelope Detection;234
6.4.2.3;8.2.3 Implementation of the Frequency-Locked Loop Using Envelope Detection;235
6.4.2.3.1;8.2.3.1 Principle of the Implemented FLL;235
6.4.2.3.2;8.2.3.2 Measurement Results;237
6.4.3;8.3 Conclusion and Perspectives;237
6.4.4;References;239
7;Part III MEMS-Based Systems;240
7.1;Chapter
9 A MEMS-Enabled Two-Receiver Chipset for Asynchronous Networks;241
7.1.1;9.1 Introduction;241
7.1.2;9.2 Utilization of RF MEMS in Low-Power Transceivers;242
7.1.2.1;9.2.1 Stabilization of Low-Power, Low-Noise RF Oscillators;244
7.1.2.2;9.2.2 Tuning of High-Q RF Amplifiers and Design Example;246
7.1.2.3;9.2.3 Resonator Input Matching;247
7.1.2.3.1;9.2.3.1 Passive Receiver Front-End Matching;249
7.1.2.3.2;9.2.3.2 Image-Reject Front-End Matching;251
7.1.3;9.3 Two-Receiver Asynchronous Chipset;253
7.1.3.1;9.3.1 System-Level Considerations, Power Requirements;253
7.1.3.2;9.3.2 Super-Regenerative Receiver Architecture;254
7.1.3.3;9.3.3 Uncertain-IF Chip;258
7.1.4;9.4 Conclusions/Toward the Future;262
7.1.5;References;263
7.2;Chapter 10 A 2.4-GHz Narrowband MEMS-Based Radio
;264
7.2.1;10.1 Introduction;265
7.2.2;10.2 Duty Cycling for Long Node Autonomy and Current Limitations;265
7.2.3;10.3 Where to Use MEMS Components and How to Waive Their Limitations;267
7.2.4;10.4 MEMS-Based Radio Architecture;269
7.2.4.1;10.4.1 Low-Power Electronic Compensation of Silicon Resonator Imperfections;271
7.2.5;10.5 Frequency Synthesizer;272
7.2.5.1;10.5.1 BAW DCO Within ADPLL;272
7.2.6;10.6 Bi-frequency Reference Oscillator;274
7.2.6.1;10.6.1 Divider Chains with Low-Power Dynamic Divider;275
7.2.6.2;10.6.2 IF Relaxation Oscillator and Homodyne PLL;277
7.2.7;10.7 Receiver;279
7.2.7.1;10.7.1 RF Front-End Using BAW Resonators;279
7.2.7.2;10.7.2 Intermediate Frequency and Baseband;281
7.2.8;10.8 Transmitter;281
7.2.8.1;10.8.1 Quasi-Direct Modulation with Fractional Divider;281
7.2.8.2;10.8.2 DSB Up-Conversion Mixer with BAW Filtering;281
7.2.8.3;10.8.3 CMOS Power Amplifier;282
7.2.9;10.9 Experimental Results;283
7.2.9.1;10.9.1 32-kHz Reference Clock;284
7.2.9.2;10.9.2 Receiver Front-End;285
7.2.9.3;10.9.3 Frequency Synthesis;286
7.2.9.4;10.9.4 Receiver Bit-Error Rate;287
7.2.9.5;10.9.5 Modulated TX Signal;288
7.2.10;10.10 Conclusion;289
7.2.11;References;290
7.3;Chapter
11 A Digitally Controlled FBAR Frequency Reference;293
7.3.1;11.1 Introduction;293
7.3.2;11.2 FBAR Characteristics as a Frequency Reference;294
7.3.3;11.3 The Whole System and Frequency Calibration Scheme;297
7.3.4;11.4 A Digitally Controlled FBAR Oscillator;299
7.3.4.1;11.4.1 Overall Design of the Oscillator Core;299
7.3.4.2;11.4.2 A Spurious-Resonance Suppressor;303
7.3.4.3;11.4.3 Principle of Frequency Tuning;305
7.3.4.3.1;11.4.3.1 Coarse Capacitors;306
7.3.4.3.2;11.4.3.2 Moderate Capacitors;307
7.3.4.4;11.4.4 Fine Frequency Tuning by a Sigma–Delta Capacitive DAC;308
7.3.4.4.1;11.4.4.1 A Principle of Frequency Tuning;309
7.3.5;11.5 Measurement;309
7.3.5.1;11.5.1 The Prototype Oscillator;309
7.3.5.2;11.5.2 Measurement Results;310
7.3.6;11.6 Conclusions;314
7.3.7;References;314
7.4;Chapter
12 A Robust Wireless Sensor Node for In-Tire-Pressure Monitoring;316
7.4.1;12.1 Power Aware System Architecture;316
7.4.1.1;12.1.1 Application Scenario;316
7.4.1.2;12.1.2 System Power Optimization;317
7.4.2;12.2 Application of In-Tire-Pressure Monitoring;319
7.4.3;12.3 Power Aware Radio Architecture;322
7.4.3.1;12.3.1 BAW-Based Transmitter;325
7.4.3.2;12.3.2 BAW-Based LNA;328
7.4.4;12.4 Performance Summary;330
7.4.5;References;330
8;Index;332
Part I. NEMS/MEMS Devices.- 1. Thin Film Bulk Acoustic Wave Resonators.- 2. Contour-Mode Aluminum Nitride Piezoelectric MEMS Resonators and Filters.- 3. Nano-Electro-Mechanical Systems (NEMS).- 4. Future Trends in Acoustic RF MEMS Devices.- Part II: MEMS-based Circuits.- 5. The Design of Low-power High-Q Oscillators.- 6. 5.4 GHz 0.35µm BiCMOS FBAR-based Single-ended and Balanced Oscillators in Above-IC Technology.- 7. Low Power Quadrature Oscillator Design Using BAW Resonators.- 8. Tunable BAW Filters.- Part III: MEMS-based Systems.- 9. A MEMS-enabled Two-receiver Chipset for Asynchronous Networks.- 10. A 2.4 GHz Narrowband MEMS-based Radio.- 11. A Digitally Controlled FBAR Frequency Reference.- 12. A Robust Wireless Sensor Node for in-Tire-Pressure Monitoring.