Fletcher / Kruse / Labudde | The Impact of Technology Education | E-Book | sack.de
E-Book

E-Book, Englisch, 177 Seiten

Fletcher / Kruse / Labudde The Impact of Technology Education

International Insights

E-Book, Englisch, 177 Seiten

ISBN: 978-3-8309-9141-0
Verlag: Waxmann Verlag GmbH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The increasing use of technology in our lives requires not only the qualification of young professionals through vocational training in order to maintain innovation and technical and societal progress, but also a technical education 'for everyone', so as to cope with these environments and to become a society with technology literacy. A lack of technology activities may not only result in a 'technology illiteracy', thus making a responsible participation in social life more difficult, but also has an impact on identity development. Against this background, technology education is getting important and has an impact on various aspects of the personality, e.g. skills, knowledge and interest in technology, which initiate lifelong learning.
With the combination of articles, the editors of Technology Education Vol. III want to give an insight into international approaches of technology education and its impact. Nine authors, respectively teams of authors from various countries present their educational setting and the impact it has for the personality development in technology.
Fletcher / Kruse / Labudde The Impact of Technology Education jetzt bestellen!

Weitere Infos & Material


1;Frontmatter;1
1.1;Cover;1
1.2;Imprint;4
1.3;Contents;5
1.4;Preface;7
2;Primary-school pupils' self-efficacy and its influence on solving technological problem-based design tasks (Victoria Adenstedt & Annika Gooß);13
2.1;Introduction;13
2.2;1. Self-efficacy in technology education;14
2.2.1;Developing technological self-efficacy through technology education;15
2.2.2;Technological self-efficacy from a gender perspective;16
2.3;2. Technological self-efficacy study;17
2.3.1;Research questions;17
2.3.2;Method and design;17
2.3.3;Sample;18
2.3.4;Results;18
2.4;3. Problem-solving in technology education;20
2.4.1;Problem-solving circle;21
2.5;4. Problem-based design study;22
2.5.1;Research questions;22
2.5.2;Sample;23
2.5.3;Method and design: mixed-methods;23
2.5.3.1;I. Questionnaire;23
2.5.3.2;II. Videotaping the problem-solving;23
2.5.3.3;III. Guided interview;25
2.5.4;First Results;25
2.6;5. Outlook;26
2.7;References;27
3;What distinguishes a technology literate pupil? Conception and development of a test instrument (Stefan Fletcher);31
3.1;1. Starting situation and objectives;31
3.2;2. Test conception – a model for technology literacy;33
3.2.1;2.1 The technology literate pupil – an ideal vision;33
3.2.2;2.2 Theoretical reference points;35
3.2.2.1;2.2.1 Content dimension: The system theory for the identification and structuring of possible contents of the concept of technology literacy;35
3.2.2.2;2.2.2 Action dimension: Typical ways of thinking and acting in technology;37
3.2.2.3;2.2.3 Dimension: fields of action / action contexts;38
3.2.3;2.3 Merging: A task development model for recording technology literacy;39
3.3;3. Test Design;40
3.3.1;3.1 Obtaining test items based on the task development model;40
3.3.2;3.2 The chosen task format;42
3.3.3;3.3 An example task;44
3.3.4;3.4 The test time;45
3.3.5;3.5 Linguistic design of the test;45
3.3.6;3.6 Data collection and analysis;45
3.4;4. Assessment of the quality criteria of the test instrument;46
3.5;References;47
4;Affinity for technology of girls and boys of lower secondary school level (Karin Güdel, Anni Heitzmann & Andreas Müller);49
4.1;1. Introduction;49
4.2;2. Objectives and research questions;49
4.3;3. Study design and methods;50
4.4;4. Theoretical background and operationalization of the construct affinity for technology (AFT);51
4.4.1;4.1 General acceptance of technology or attitude towards technology (OECD, 2006);52
4.4.2;4.2 Individual interest;52
4.4.3;4.3 Self-efficacy in solving technical tasks;53
4.4.4;4.4 Gender role in vocational choice;54
4.5;5. Results;54
4.5.1;5.1 Research question 1;54
4.5.2;5.2 Research question 2;57
4.5.3;5.3 Research question 3;57
4.6;6. Summary and discussion;58
4.7;7. Conclusions;58
4.8;Acknowledgements;59
4.9;References;60
5;Increasing decision making competencies by applying simulation and gaming in technology and engineering education (Christian K. Karl & Heide Lukosch);63
5.1;1. Introduction;63
5.2;2. Methodology;64
5.3;3. Decision making competencies in technology and engineering;65
5.4;4. Introduction to the employed approaches;66
5.4.1;4.1 Case 1: The educational training environment “Construction Giant”;66
5.4.2;4.2 Case 2: Triadic Game Design Approach as learning process;68
5.5;5. Application of the approaches;69
5.5.1;5.1 Case 1: “Construction Giant” as training method in construction technology;69
5.5.1.1;5.1.1 Included decision areas;70
5.5.1.2;5.1.2 Student groups and process;71
5.5.2;5.2 Case 2: Triadic Game Design as teaching method in Management of Technology;72
5.5.2.1;5.2.1 Student group and process;73
5.6;6. Results and discussion;73
5.6.1;6.1 Case 1: Board game as tool for improving decision making abilities;73
5.6.2;6.2 Case 2: Triadic Game Design workshop as educational structure for decision making;76
5.7;7. Conclusions;80
5.8;References;81
6;Competences in a digitalised world in the context of general and vocational technical education and training (Stefan Kruse & Alexander Franz Koch);85
6.1;1. The social relevance of digitalisation;85
6.2;2. Digitalisation and competences;86
6.2.1;2.1 Qualification requirements of the industry;87
6.2.2;2.2 Content structuring of possible fields of competence;88
6.3;3. Analysis of exemplary subject areas for the digital transformation on the basis of the VDI educational standards technology;88
6.3.1;3.1 Topic “internet of things”;89
6.3.2;3.2 Topic “socio-technical systems” or “man-machine systems”;90
6.3.3;3.3 Topic “cyber-physical systems”;92
6.3.4;3.4 The resulting competence grid for general technical education;94
6.4;4. Research question and method;94
6.4.1;4.1 Research question;94
6.4.2;4.2 Methodology;95
6.4.3;4.3 Sample and procedure;97
6.5;5. Results of the study and recommendations;97
6.5.1;5.1 Inter-rater agreement;97
6.5.2;5.2 Overall agreement;98
6.5.3;5.3 Agreement by dyads;98
6.5.4;5.4 Top categories: High agreement and high scoring;99
6.6;6. Discussion;100
6.6.1;6.1 Results by sampling and limitations by methodology;100
6.6.2;6.2 Differences in domains: Contents for future education;101
6.6.3;6.3 Effects of competence recommendations in the context of transitional preparation;102
6.7;Acknowledgments;104
6.8;References;104
7;Technology education in pre-school and primary school (Ingelore Mammes);107
7.1;1. On the necessity of technology education in early education;107
7.2;2. Early learning from technical phenomena;107
7.2.1;2.1 Technical phenomena – defining the term;107
7.2.2;2.2 Early learning conditions;108
7.3;3. Technology education in nursery and primary school;109
7.3.1;3.1 Technology education in nursery school;109
7.3.2;3.2 Technology education in primary school;110
7.4;4. Results;111
7.5;5. Conclusion;113
7.6;References;115
8;Tinkering with technology education (Elizabeth McGregor Jacobides & Mark Winterbottom);117
8.1;Making sense of Tinkering for technology education;117
8.2;What do Tinkering and Making offer Technology Education?;119
8.3;How does Tinkering provide the benefits of open inquiry to technology educators?;123
8.4;How does tinkering provide the benefits of informal learning to technology educators?;125
8.5;Tinkering and engineering education;128
8.6;The process connection between Tinkering and engineering;128
8.7;The affordances of Tinkering for engineering;131
8.8;Exploiting affordances through a focus on tinkerability;137
8.9;Digital tinkerability;138
8.10;Conclusion;139
8.11;References;140
9;Current state and suggestions for the K-12 STEM school industry partnership in the United States (Johannes Strobel & Yan Sun);143
9.1;Introduction;143
9.2;Literature review;144
9.3;Methodology;146
9.4;A taxonomy of K-12 STEM school-industry partnership;148
9.5;A model for building K-12 STEM school-industry partnerships;156
9.6;Conclusion;160
9.7;References;161
10;National evaluations of technology education. What do they tell us about the impact?. What do they tell us about the impact? (Marc J. de Vries);163
10.1;1. Introduction: promises and reality;163
10.2;2. National evaluation of technology education in the Netherlands;164
10.3;3. National evaluation of technology education in England;168
10.4;4. Comparing the two national evaluations;170
10.5;5. The value of national evaluations for technology education;171
10.6;References;173
11;Backmatter;175
11.1;List of authors;175


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.