Franke Three-Dimensional Molded Interconnect Devices (3D-MID)
1. Auflage 2014
ISBN: 978-1-56990-552-4
Verlag: Hanser Publications
Format: PDF
Kopierschutz: 1 - PDF Watermark
Materials, Manufacturing, Assembly and Applications for Injection Molded Circuit Carriers
E-Book, Englisch, 368 Seiten
ISBN: 978-1-56990-552-4
Verlag: Hanser Publications
Format: PDF
Kopierschutz: 1 - PDF Watermark
MIDs are used in virtually every sector of electronics. The many standard applications for MIDs in the automotive industry in particular also drive for further development and research into MID technology. The significance of MID technology is also increasing in medical engineering, IT and telecommunications and in industrial automation, with numerous applications now successfully implemented in all these various fields.
This book offers a comprehensive insight into the state of the art in 3D-MID technology along the entire process chain. Individual chapters, moreover, deal with systematics of targeted development of MID parts and explore, with a dozen and more successful series-production applications as examples, the widely diverse fields of application for MID technology.
Prof. Dr.-Ing. Jörg Franke ist Leiter des Lehrstuhls für Fertigungsautomatisierung und Produktionssystematik (FAPS) an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1MID Technology and Mechatronic Integration Potential;14
3.1;1.1 Technological Basics;14
3.1.1;1.1.1
Definition and Root Principle;14
3.1.2;1.1.2
Geometric Classification;15
3.1.3;1.1.3
Potential of 3D-MID Technology;16
3.1.4;1.1.4
MID Reference Process;18
3.1.5;1.1.5
Factors Influencing Choice of Technology;19
3.1.6;1.1.6
Differentiation from Related Technology Fields;20
3.2;1.2
Relevant Industries and Areas of Application;21
3.2.1;1.2.1
MID-Relevant Industries;22
3.2.2;1.2.2
Areas of Application;24
3.3;1.3
The MID Market, a Global Comparison;25
3.3.1;1.3.1
Historical Development;26
3.3.2;1.3.2 MID Focuses by Region;27
3.4;1.4 Main Fields of MID Research;29
3.5;1.5 Key Factors for Successful Projects;32
3.6;1.6
Network-Oriented Cooperation within the Research Association Molded Interconnect Devices (3-D MID);33
4;2Materials for 3D-MID;36
4.1;2.1
Introduction to MID Materials Classes;38
4.2;2.2 Materials Properties and Determination of Characteristic Values for MID;40
4.2.1;2.2.1
Mechanical Characteristic Values of Plastics;42
4.2.2;2.2.2
Thermal Characteristic Values;46
4.2.2.1;2.2.2.1
Short-Term Exposure to Temperature;46
4.2.2.2;2.2.2.2
Long-Term Exposure to Temperature;48
4.2.2.3;2.2.2.3
Relevant Thermal Characteristic Values for MID;48
4.2.3;2.2.3
Electrical Characteristic Values;50
4.3;2.3
Materials for MID Technology;52
4.3.1;2.3.1
Thermoplastics for MID;52
4.3.1.1;2.3.1.1 Standard Thermoplastics;53
4.3.1.2;2.3.1.2
Engineering Thermoplastics;54
4.3.1.3;2.3.1.3 High-Performance Thermoplastics;56
4.3.2;2.3.2 Modified Thermoplastics for MID;58
4.3.2.1;2.3.2.1 Radiation Crosslinked Thermoplastics;59
4.3.2.2;2.3.2.2 Highly Filled Thermoplastics;62
4.3.2.3;2.3.2.3 Thermoplastics for Selected Technologies of MID Metallization;66
4.3.3;2.3.3 Thermoset Plastics for MID;71
5;3Structuring and Metallization;76
5.1;3.1
Structuring Processes;76
5.1.1;3.1.1
One-Shot Injection Molding;77
5.1.1.1;3.1.1.1
Laser Structuring;77
5.1.1.1.1;3.1.1.1.1 LPKF-LDS® Process;78
5.1.1.1.2;3.1.1.1.2 ADDIMID Technology;83
5.1.1.1.3;3.1.1.1.3 Alternative Laser Structuring Processes;84
5.1.1.2;3.1.1.2 Printing Techniques;87
5.1.1.2.1;3.1.1.2.1
Aerosol-Jet® Printing;87
5.1.1.2.2;3.1.1.2.2 Inkjet Printing;90
5.1.1.2.3;3.1.1.2.3 Hot Embossing;93
5.1.2;3.1.2 Two-Shot Molding;97
5.1.3;3.1.3 Insert Molding;98
5.1.3.1;3.1.3.1 Film Insert Molding;98
5.1.3.1.1;3.1.3.1.1 Thermoplastic Foam Molding;99
5.1.3.1.2;3.1.3.1.2 Injection Compression Molding;99
5.1.3.1.3;3.1.3.1.3 Press Insert Molding;100
5.1.3.1.4;3.1.3.1.4
Other Varieties of Film Insert Molding;101
5.1.4;3.1.4 Alternative Structuring Processes;102
5.1.4.1;3.1.4.1 Primer Technology;102
5.1.4.2;3.1.4.2 Tampon Printing;104
5.1.4.3;3.1.4.3 Plasma Technologies;104
5.1.4.3.1;3.1.4.3.1 Flamecon®;104
5.1.4.3.2;3.1.4.3.2
Plasmadust®;105
5.2;3.2 Metallization;109
5.2.1;3.2.1 Cleaning the Substrate Surface;109
5.2.2;3.2.2 Metallization;110
5.2.3;3.2.3 Thickness and Roughness of Coatings;115
5.2.4;3.2.4 Current-Carrying Capability;119
6;4Assembly Technology for 3D-MID;126
6.1;4.1 Process Chain;126
6.2;4.2 Assembly-Related Challenges;127
6.2.1;4.2.1 Effect of Structure;127
6.2.2;4.2.2 Component Placement on Three-Dimensional Bodies;128
6.3;4.3 Automated Assembly;131
6.3.1;4.3.1 Requirements;131
6.3.2;4.3.2 Application of Connection Medium;131
6.3.3;4.3.3 Placement of Components;136
6.3.4;4.3.4 Reflow Soldering;147
6.3.5;4.3.5 Optical Inspection;148
7;5Interconnection Technology;152
7.1;5.1 Specifics and Challenges;152
7.2;5.2 Connection Mediums;156
7.2.1;5.2.1 Solder Paste;156
7.2.2;5.2.2 Conductive and Nonconductive Adhesives;158
7.2.2.1;5.2.2.1 Isotropic Conductive Adhesives;158
7.2.2.2;5.2.2.2 Anisotropic Conductive Adhesives;160
7.2.2.3;5.2.2.3 Nonconductive Adhesives;160
7.2.3;5.2.3 Press-In Pins;160
7.3;5.3 Connection Process;162
7.3.1;5.3.1 Reflow Soldering Techniques;164
7.3.1.1;5.3.1.1 Infrared Soldering;164
7.3.1.2;5.3.1.2 Convection Soldering;164
7.3.1.3;5.3.1.3 Vapor-Phase Soldering;165
7.3.2;5.3.2 Selective Soldering Processes;168
7.3.3;5.3.3 Gluing;170
7.3.4;5.3.4 Press-In Connection Technique;172
7.3.5;5.3.5 Chip Placement;175
7.3.5.1;5.3.5.1 Wire Bonding;177
7.3.5.2;5.3.5.2 Flip-Chip Technology;179
7.3.5.3;5.3.5.3 Glob Top;181
7.4;5.4 Interfacing to Periphery;182
7.5;5.5 Protecting Connections Against Environmental Influences;183
8;6Quality and Reliability;186
8.1;6.1 Challenges of Quality Assurance;186
8.2;6.2 Simulation-Assisted Quality Validation;188
8.3;6.3 Nondestructive Testing Methods;189
8.3.1;6.3.1 Optical Testing and Inspection Methods;190
8.3.2;6.3.2 Automated Optical Inspection;191
8.3.3;6.3.3 X-ray Analysis;192
8.3.4;6.3.4 Computerized Tomography;193
8.3.5;6.3.5 X-ray Fluorescence Analysis;194
8.4;6.4 Destructive Testing Methods;195
8.4.1;6.4.1 Adhesive Strength;195
8.4.1.1;6.4.1.1 Peel Test;195
8.4.1.2;6.4.1.2 Pull-Off Test;196
8.4.1.3;6.4.1.3 Shear Pull Test;197
8.4.1.4;6.4.1.4 Chisel Test;197
8.4.1.5;6.4.1.5 Cross-Cut Test (Tape Test);198
8.4.2;6.4.2 Measurement of Shear Force and Pull Test;200
8.4.3;6.4.3 Analysis of Prepared Sections;201
8.5;6.5 Electrical Characterization;202
8.5.1;6.5.1 Resistance;203
8.5.2;6.5.2 Ohmic Heating;204
8.5.3;6.5.3 Insulating Properties;205
8.6;6.6 Reliability Analysis;205
8.6.1;6.6.1 MID-Specific Challenges;206
8.6.2;6.6.2 Accelerated Aging;207
8.6.3;6.6.3 Application Example I: High-Temperature MID;209
8.6.4;6.6.4 Application Example II: Press-In Connections;211
9;7MID Prototyping;214
9.1;7.1 Classification of Samples and Prototypes;214
9.1.1;7.1.1 Visualization Samples;215
9.1.2;7.1.2 Concept Model;215
9.1.3;7.1.3 Fully Functional Sample;216
9.1.4;7.1.4 Prototype;217
9.2;7.2 Processes for Producing Plastic Blanks;218
9.2.1;7.2.1 Stereolithography;218
9.2.2;7.2.2 Selective Laser Sintering;219
9.2.3;7.2.3 Fused Deposition Modeling;220
9.2.4;7.2.4 Vacuum Casting in Silicone Molds;221
9.2.5;7.2.5 Milling Thermoplastic Semifinished Products;222
9.2.6;7.2.6 Injection Molding;222
9.3;7.3 Samples and Prototypes Produced by the LPKF-LDS® Process;223
9.3.1;7.3.1 ProtoPaint LDS Process;223
9.3.2;7.3.2 LDS Process with FDM Plastic Parts;225
9.3.3;7.3.3 LDS Process with Vacuum Castings;225
9.3.4;7.3.4 LDS Process with Milled Semifinished Products;225
9.3.5;7.3.5 LDS Process with Moldings from Rapid Tooling Injection-Molding Tools;226
9.3.6;7.3.6 LDS Process with Moldings from Steel Tools with Nonhardened Inserts;226
9.4;7.4 Samples and Prototypes Produced by Hot Embossing;227
9.5;7.5 Samples and Prototypes Produced by Two-Shot Molding;227
9.6;7.6 Aerosol-Jet Printing on SLA Parts;227
9.7;7.7 Overview of the Various Combinations for MID Prototyping;228
10;8Integrative Development of MID;230
10.1;8.1 Systematic Approach for the Development of MID;231
10.1.1;8.1.1 VDI Guideline 2206: Design Methodology for Mechatronic Systems;231
10.1.2;8.1.2 Thomas Peitz’ Methodology for Product Optimization of Mechanical Electronic Modules;233
10.1.3;8.1.3 Ingo Kaiser’s Systematic Approach for the Development of Mechatronic Systems;235
10.2;8.2 Requirements;238
10.3;8.3 Product Conceptualization;240
10.4;8.4 Production-Process Conceptualization;242
10.5;8.5 Electronics Design;248
10.6;8.6 Elaboration of the Production Process;253
10.7;8.7 Elaboration of Assembly and Connection Technology;255
10.8;8.8 Work Planning;257
10.9;8.9 MID-Specific Instruments of Development;259
10.9.1;8.9.1 MID Design Catalogs;259
10.9.2;8.9.2 Properties Cards for MID Processes;261
10.9.3;8.9.3 MID Guidelines;263
10.9.4;8.9.4 MID Features;265
10.10;8.10 Computer Assistance;267
10.10.1;8.10.1 MID-Specific Requirements for Development Tools;268
10.10.2;8.10.2 Software Tools for Design and Layout;274
10.10.3;8.10.3 Software Tools for Simulation;278
10.10.4;8.10.4 CAD/CAM Chains;284
11;9Case Studies;290
11.1;9.1 OLED;291
11.2;9.2 Flow Sensor;292
11.3;9.3 Multiband Antenna for Smartphones;293
11.4;9.4 ACC Position Sensor;295
11.5;9.5 Pressure Sensor;296
11.6;9.6 MULTI LED;297
11.7;9.7 Insulin Pump;299
11.8;9.8 Passive UHF RFID Transponder;300
11.9;9.9 LED Camera Module;301
11.10;9.10 3D Switching Module;303
11.11;9.11 Security Caps;305
11.12;9.12 Solar Sensor;307
11.13;9.13 Microphone Carrier for Hearing Aid;308
11.14;9.14 Seat-Adjustment Switch;309
11.15;9.15 LED Light;311
12;10List of Abbreviations;314
13;11Literature;320
14;12Authors and Contributors;338
14.1;12.1 Editor;338
14.2;12.2 Authors;338
14.3;12.3 Consulting Experts;343
15;13Addresses;344
15.1;13.1 Research Association Molded Interconnect Devices (3-D.MID);344
15.2;13.2 Members of the Research Association Molded Interconnect Devices (3-D.MID);344
16;Index;364