Galar Pascual | Artificial Intelligence Tools | E-Book | www.sack.de
E-Book

E-Book, Englisch, 549 Seiten

Galar Pascual Artificial Intelligence Tools

Decision Support Systems in Condition Monitoring and DIagnosis
Erscheinungsjahr 2015
ISBN: 978-1-4665-8406-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Decision Support Systems in Condition Monitoring and DIagnosis

E-Book, Englisch, 549 Seiten

ISBN: 978-1-4665-8406-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Artificial intelligence (AI) represents a programming approach and methodology that has evolved and is still evolving for effective maintenance management through its use in condition monitoring (CM). The most prevalent application of AI has been fault diagnosis and trouble shooting in maintenance of industrial machinery. AI tools are used in maintenance of all types of industrial machinery. Due to the success of AI in CM, this book compiles all AI tools used in CMg to structure them in a reference handbook.

Galar Pascual Artificial Intelligence Tools jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Massive field data collection: Issues and challenges

Maintenance data: different sources and disparate nature

Required data for diagnosis and prognosis

Definition of representative normal regions

The boundary between normal and outlying behaviour

Notion of an outlier for different application domains

Availability of labelled data for training/validation

Malicious adversaries

Data and noise

Normal behaviour and its evolution

Condition monitoring: Available techniques

The role of CM in CBM and PdM

Difference between CM and NDT

Oil Analysis

Vibration Analysis

Motor Circuit Analysis

Thermography

Ultrasonic Monitoring

Performance Monitoring through automation data, process data and other information

sources

Challenges of Condition Monitoring using AI techniques

Anomaly detection

Rare Class Mining

Chance discovery

Novelty Detection

Exception Mining

Noise Removal

The Swan Song

Input and output data

Supervised Failure Detection

Semi-supervised Failure Detection

Unsupervised Failure Detection

Individual Failures

Contextual Failures

Collective Failures

Classification Based Techniques

Neural network based approaches

Support Vector machines (SVM) based approaches

Bayesian networks based approaches

Liquid States Machines (LSM) and other Reservoir Computing methods

Nearest Neighbor Based Techniques

The concept of neighborhood

Distance based methods

Density based methods

Local Outlier Factor (LOF)

Connectivity Outlier Factor (COF)

Multi-Granularity Deviation Factor (MDEF)

The use of NNB in semi supervised and unsupervised learning

Clustering Based Techniques

Categorization: Semi-Supervised and unsupervised

Data records with problems to fit into any cluster (residuals from clustering)

The problem of small clusters

Low density clusters or local anomalies

Computational cost and problems of outliers in clusters

Statistical techniques

The use of stochastic distributions to detect outliers

Issues related to data set size

Parametric Techniques

Non-parametric Techniques

Information Theory Based Techniques

Information contained in the maintenance data

Entropy and relative entropy estimation

The detection of alterations in information content

Estimation of optimum size of data set

The advantages of information theory as unsupervised system

The uncertainty management

Classical logic and fuzzy logic

Using fuzzy logic to solve diagnosis problems

Defuzzification

The need for complex relations in contextual decision making

Bayesian analysis versus classical statistical analysis



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.