E-Book, Englisch, Band 52, 245 Seiten, eBook
Reihe: Springer INdAM Series
Georgiev / Michelangeli / Scandone Qualitative Properties of Dispersive PDEs
1. Auflage 2022
ISBN: 978-981-19-6434-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 52, 245 Seiten, eBook
Reihe: Springer INdAM Series
ISBN: 978-981-19-6434-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I: Long-time behavior of NLS-type equations.- 1 Scipio Cuccagna, Note on small data soliton selection for nonlinear Schrödinger equations with potential.- 2 Jacopo Bellazzini and Luigi Forcella, Dynamics of solutions to the Gross-Pitaevskii equation describing dipolar Bose-Einstein condensates.- Part II: Probabilistic and nonstandard methods in the study of NLS equations.- 3 Renato Luca, Almost sure pointwise convergence of the cubic nonlinear Schrödinger equation on T^2.- 4 Nevena Dugandžija and Ivana Vojnovic, Nonlinear Schrödinger equation with singularities.- Part III: Dispersive properties.- 5 Vladimir Georgiev, Alessandro Michelangeli, Raffaele Scandone, Schrödinger flow's dispersive estimates in a regime of re-scaled potentials.- 6 Federico Cacciafesta, Eric Sere, Junyong Zhang, Dispersive estimates for the Dirac-Coulomb equation.- 7 Matteo Gallone, Alessandro Michelangeli, Eugenio Pozzoli, Heat equation with inverse-square potential of bridging type across twohalf-lines.- Part IV: Wave and Kdv-type equations.- 8 Felice Iandoli, On the Cauchy problem for quasi-linear Hamiltonian KdV-type equations.- 9 Vladimir Georgiev and Sandra Lucente, Linear and nonlinear interaction for wave equations with time variable coefficients.- 10 Matteo Gallone and Antonio Ponno, Hamiltonian field theory close to the wave equation: from Fermi-Pasta-Ulam to water waves.




