E-Book, Englisch, 450 Seiten
Gorak / Sorensen Full of Chemical Engineering / Sorensen Distillation
1. Auflage 2014
ISBN: 978-0-12-386548-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Fundamentals and Principles
E-Book, Englisch, 450 Seiten
Reihe: Handbooks in Separation Science
ISBN: 978-0-12-386548-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Distillation: Fundamentals and Principles - winner of the 2015 PROSE Award in Chemistry & Physics - is a single source of authoritative information on all aspects of the theory and practice of modern distillation, suitable for advanced students and professionals working in a laboratory, industrial plants, or a managerial capacity. It addresses the most important and current research on industrial distillation, including all steps in process design (feasibility study, modeling, and experimental validation), together with operation and control aspects. This volume features an extra focus on the conceptual design of distillation. - Winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers - Practical information on the newest development written by recognized experts - Coverage of a huge range of laboratory and industrial distillation approaches - Extensive references for each chapter facilitates further study
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Distillation: Fundamentals
and Principles;4
3;Copyright;5
4;Contents;6
5;Preface to the Distillation Collection;8
6;Preface to Distillation: Fundamentals
and Principles;10
7;List of Contributors;12
8;List of Symbols and Abbreviations;14
8.1;Latin symbols;14
8.2;Greek Symbols;20
8.3;Subscripts;21
8.4;Superscripts;22
8.5;Abbreviations;23
8.6;Abbreviations of chemical compounds;25
9;Chapter 1 - History of Distillation;26
9.1;1.1 Introduction;26
9.2;1.2 From neolithic times to alexandria (3500 BC–AD 700);27
9.3;1.3 The alembic, the arabs, and albertus magnus (AD 700–1450);31
9.4;1.4 Printed books and the rise of science (1450–1650);33
9.5;1.5 From laboratory to industry (1650–1800);39
9.6;1.6 Scientific impact and industrialization (1800–1900);42
9.7;1.7 Engineering science (1900–1950);47
9.8;1.8 Improvements and integration (1950–1990);55
9.9;1.9 What will be the next innovation cycle (1990–2020 and beyond)?;59
9.10;1.10 Summary;61
9.11;References;62
10;Chapter 2 - Vapor–Liquid Equilibrium and Physical Properties for Distillation;70
10.1;2.1 Introduction;71
10.2;2.2 Thermodynamic fundamentals;72
10.3;2.3 Calculation of VLE using gE models;76
10.4;2.4 Calculation of VLE using equations of state;85
10.5;2.5 Liquid–liquid equilibria;92
10.6;2.6 Electrolyte systems;93
10.7;2.7 Conditions for the occurrence of azeotropic behavior;95
10.8;2.8 Predictive models;99
10.9;2.9 Calculation of other important thermophysical properties;108
10.10;2.10 Application of thermodynamic models and factual databanks for the development and simulation of separation processes;114
10.11;2.11 Summary;118
10.12;Acknowledgment;119
10.13;References;119
11;Chapter 3 - Mass Transfer in Distillation;122
11.1;3.1 Introduction;123
11.2;3.2 Fluxes and conservation equations;124
11.3;3.3 Constitutive relations;125
11.4;3.4 Diffusion coefficients;129
11.5;3.5 Mass transfer coefficients;135
11.6;3.6 Estimation of mass transfer coefficients in binary systems;140
11.7;3.7 Models for mass transfer in multicomponent mixtures;148
11.8;3.8 Mass transfer in tray columns;151
11.9;3.9 Mass transfer in packed columns;160
11.10;3.10 Further reading;164
11.11;References;164
12;Chapter 4 - Principles of Binary Distillation;170
12.1;4.1 Introduction;171
12.2;4.2 Vapor–liquid equilibrium;171
12.3;4.3 Differential distillation;178
12.4;4.4 Flash distillation;180
12.5;4.5 Continuous distillation with rectification;183
12.6;4.6 Concluding remarks;208
12.7;References;210
13;Chapter 5 - Design and Operation of Batch Distillation;212
13.1;5.1 Introduction;213
13.2;5.2 Batch column operation;217
13.3;5.3 Design of batch distillation;222
13.4;5.4 Batch distillation configurations;223
13.5;5.5 Control of batch distillation;227
13.6;5.6 Complex batch distillation;230
13.7;5.7 Modeling of batch distillation;238
13.8;5.8 Optimization of batch distillation;240
13.9;5.9 The future of batch distillation;245
13.10;References;246
14;Chapter 6 - Energy Considerations in Distillation;250
14.1;6.1 Introduction to energy efficiency;251
14.2;6.2 Energy-efficient distillation;262
14.3;6.3 Energy-efficient distillation: operation and control;271
14.4;6.4 Heat integration of distillation;272
14.5;6.5 Energy-efficient distillation: advanced and complex column configurations;277
14.6;6.6 Energy-efficient distillation: evaluation of energy requirements;287
14.7;6.7 Conclusions;292
14.8;References;292
15;Chapter 7 - Conceptual Design of Zeotropic Distillation Processes;296
15.1;7.1 Introduction;296
15.2;7.2 Synthesizing all possible distillation configurations;299
15.3;7.3 Thermal coupling;309
15.4;7.4 Identifying optimal configurations;314
15.5;7.5 An example: petroleum crude distillation;318
15.6;7.6 Additional multicolumn configurations;320
15.7;7.7 Summary and thoughts toward the future;325
15.8;References;325
16;Chapter 8 - Conceptual Design of Azeotropic Distillation Processes;330
16.1;8.1 Introduction;331
16.2;8.2 Generation of distillation process variants;335
16.3;8.3 Shortcut evaluation of distillation processes;349
16.4;8.4 Optimization-based conceptual design of distillation processes;360
16.5;8.5 Design studies for different types of azeotropic distillation processes;362
16.6;8.6 Summary and conclusions;373
16.7;References;374
17;Chapter 9 - Hybrid Distillation Schemes: Design, Analysis, and Application;382
17.1;9.1 Introduction;382
17.2;9.2 Selection of HDS: rule-based procedure;383
17.3;9.3 Model-based computer-aided methods and tools;388
17.4;9.4 Application of HDS;400
17.5;9.5 Conclusions and future perspectives;405
17.6;References;405
18;Chapter 10 - Modeling of Distillation Processes;408
19;Chapter 11 - Optimization of Distillation Processes;462
19.1;11.1 Introduction;463
19.2;11.2 Optimization of a single distillation column;463
19.3;11.3 Synthesis of distillation sequences;483
19.4;References;509
19.5;Appendix;514
19.6;Optimization background;514
19.7;MINLP methods;515
19.8;Generalized disjunctive programming;516
19.9;References;520
20;Index;522
History of Distillation
Abstract
Distillation is one of the oldest and most commonly used separation and purification methods (besides crystallization) and probably one of the most thoroughly investigated and understood. This chapter traces its historical development from the first applications more than 5000years ago in Mesopotamia to the medieval period, the nineteenth-century industrial developments, and contemporary applications. In view of the multitude of information on distillation in the literature, the emphasis here is on the major applications and equipment leading to the current mature technology. Processes and materials together with scientific knowledge are mirrored in the development of distillation. Current developments encompass deeper knowledge of heat and mass transfer as well as the integration of various process functions.
Keywords
Alcohol distillation; Coal tar refining; Cryogenic air separation; Innovation; Innovation cycle; Integrated process steps; Mass production; Petroleum distillation; Process intensification; Structured packing; Tray development
Chapter Outline
1.2 From neolithic times to alexandria (3500 BC–AD 700)?2
1.3 The alembic, the arabs, and albertus magnus (AD 700–1450)?6
1.4 Printed books and the rise of science (1450–1650)?8
1.5 From laboratory to industry (1650–1800)?14
1.6 Scientific impact and industrialization (1800–1900)?17
1.7 Engineering science (1900–1950)?22
1.8 Improvements and integration (1950–1990)?30
1.9 What will be the next innovation cycle (1990–2020 and beyond)??34
1.1. Introduction
1.2. From neolithic times to alexandria (3500 BC–AD 700)
FIGURE 1.1 Extraction pot with evaporating liquid, condensing vapor, and extraction material in the chamfer of the pot [8]. The lid is sealed against the pot to avoid vapor and condensate losses.